Kersting, J. and Geierhos, M. (2021a). Human Lan-
guage Comprehension in Aspect Phrase Extraction
with Importance Weighting. In Kapetanios, E., Ho-
racek, H., M
´
etais, E., and Meziane, F., editors, Nat-
ural Language Processing and Information Systems,
vol. 12801 of LNCS. Springer. In Press.
Kersting, J. and Geierhos, M. (2021b). Towards Aspect Ex-
traction and Classification for Opinion Mining with
Deep Sequence Networks. In Loukanova, R., editor,
Natural Language Processing in Artificial Intelligence
– NLPinAI 2020, volume 939 of SCI, pages 163–189.
Springer.
Krippendorff, K. (2011). Computing Krippendorff’s Alpha-
Reliability. Technical Report 1-25-2011, University
of Pennsylvania.
Lafferty, J., McCallum, A., and Pereira, F. C. N. (2001).
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Pro-
ceedings of the 18th International Conf. on Machine
Learning, pages 282–289. ACM.
Landis, J. R. and Koch, G. G. (1977). The Measurement
of Observer Agreement for Categorical Data. Biomet-
rics, 33(1):159–174.
Li, X., Bing, L., Zhang, W., and Lam, W. (2019). Exploiting
BERT for End-to-End Aspect-based Sentiment Anal-
ysis. In Proceedings of the 2019 EMNLP Workshop
W-NUT: The 5th Workshop on Noisy User-generated
Text, pages 34–41. ACL.
Mayzlin, D., Dover, Y., and Chevalier, J. (2014). Promo-
tional Reviews: An Empirical Investigation of Online
Review Manipulation. The American Economic Re-
view, 104(8):2421–2455.
Nazir, A., Rao, Y., Wu, L., and Sun, L. (2020). Issues and
Challenges of Aspect-based Sentiment Analysis: A
Comprehensive Survey. IEEE Transactions on Affec-
tive Computing, pages 1–1.
Nguyen, T. H. and Shirai, K. (2015). PhraseRNN: Phrase
Recursive Neural Network for Aspect-based Senti-
ment Analysis. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2509–2514. ACL.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S.,
and Androutsopoulos, I. (2015). SemEval-2015 Task
12: Aspect Based Sentiment Analysis. In Proceedings
of the 9th International Workshop on Semantic Evalu-
ation, pages 486–495. ACL.
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S.,
and Androutsopoulos, I. (2016a). SemEval-2016 Task
5: Aspect Based Sentiment Analysis. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation, pages 19–30. ACL.
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S.,
and Androutsopoulos, I. (2016b). SemEval-2016 Task
5: Aspect Based Sentiment Analysis (ABSA-16) An-
notation Guidelines.
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou,
H., Androutsopoulos, I., and Manandhar, S. (2014).
SemEval-2014 Task 4: Aspect Based Sentiment Anal-
ysis. In Proceedings of the 8th International Workshop
on Semantic Evaluation, pages 27–35. ACL.
Rodgers, J. L. and Nicewander, W. A. (1988). Thirteen
Ways to Look at the Correlation Coefficient. The
American Statistician, 42(1):59–66.
Schober, P., Boer, C., and Schwarte, L. A. (2018). Correla-
tion Coefficients: Appropriate Use and Interpretation.
Anesthesia & Analgesia, 126(5):1763–1768.
Schuster, M. and Paliwal, K. K. (1997). Bidirectional Re-
current Neural Networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.
Spearman, C. (1904). The Proof and Measurement of Asso-
ciation between Two Things. The American Journal
of Psychology, 15(1):72–101.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is All You Need. In Proceedings of
the 31st Conference on Neural Information Process-
ing Systems, pages 5998–6008. Curran Associates.
Wojatzki, M., Ruppert, E., Holschneider, S., Zesch, T., and
Biemann, C. (2017). GermEval 2017: Shared Task
on Aspect-based Sentiment in Social Media Customer
Feedback. In Proceedings of the GermEval 2017 –
Shared Task on Aspect-based Sentiment in Social Me-
dia Customer Feedback, pages 1–12. Springer.
Xiao, C., Ye, J., Esteves, R. M., and Rong, C. (2016). Using
Spearman's Correlation Coefficients for Exploratory
Data Analysis on Big Dataset. Concurrency and
Computation: Practice and Experience, 28(14):3866–
3878.
Zeithaml, V. (1981). How Consumer Evaluation Processes
Differ between Goods and Services. Marketing of Ser-
vices, 9(1):186–190.
Zhang, L., Wang, S., and Liu, B. (2018). Deep Learning
for Sentiment Analysis: A Survey. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Dis-
covery, 8(4):1–25.
Zhou, J., Huang, J. X., Chen, Q., Hu, Q. V., Wang, T., and
He, L. (2019). Deep Learning for Aspect-Level Sen-
timent Classification: Survey, Vision, and Challenges.
IEEE Access, 7:78454–78483.
DATA 2021 - 10th International Conference on Data Science, Technology and Applications
284