Self-Organizing Systems (SASO), pages 40–49. ISSN:
1949-3681.
Ramirez, Y. M., Podolskiy, V., and Gerndt, M. (2019).
Capacity-Driven Scaling Schedules Derivation for
Coordinated Elasticity of Containers and Virtual Ma-
chines. In 2019 IEEE International Conference on
Autonomic Computing (ICAC), pages 177–186. ISSN:
2474-0756.
Ravandi, B. and Papapanagiotou, I. (2018). A self-
organized resource provisioning for cloud block stor-
age. Future Generation Computer Systems, 89:765–
776.
Rodr
´
ıguez-Gracia, D., Piedra-Fern
´
andez, J. A., Iribarne,
L., Criado, J., Ayala, R., Alonso-Montesinos, J., and
Maria de las Mercedes, C.-U. (2019). Microservices
and Machine Learning Algorithms for Adaptive Green
Buildings. Sustainability, 11(16):4320. Publisher:
Multidisciplinary Digital Publishing Institute.
Romay, M. P., Fernandez-Sanz, L., and Rodriguez, D.
(2011). A systematic review of self-adaptation in
service-oriented architectures.
Rossi, F., Cardellini, V., and Presti, F. L. (2020a). Hierarchi-
cal Scaling of Microservices in Kubernetes. In 2020
IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems (ACSOS), pages
28–37.
Rossi, F., Cardellini, V., and Presti, F. L. (2020b). Self-
adaptive Threshold-based Policy for Microservices
Elasticity. In 2020 28th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 1–8.
ISSN: 2375-0227.
Rovnyagin, M. M., Guminskaia, A. V., Plyukhin, A. A.,
Orlov, A. P., Chernilin, F. N., and Hrapov, A. S.
(2018). Using the ML-based architecture for adaptive
containerized system creation. In 2018 IEEE Confer-
ence of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), pages 358–360.
Rychener, L., Montet, F., and Hennebert, J. (2020). Archi-
tecture Proposal for Machine Learning Based Indus-
trial Process Monitoring. Procedia Computer Science,
170:648–655.
Sahni, J. and Vidyarthi, D. P. (2017). Heterogeneity-aware
adaptive auto-scaling heuristic for improved QoS and
resource usage in cloud environments. Computing,
99(4):351–381.
Sami, H., Mourad, A., and El-Hajj, W. (2020). Vehicular-
OBUs-As-On-Demand-Fogs: Resource and Context
Aware Deployment of Containerized Micro-Services.
IEEE/ACM Transactions on Networking, 28(2):778–
790. Conference Name: IEEE/ACM Transactions on
Networking.
Sampaio, A. R., Rubin, J., Beschastnikh, I., and Rosa, N. S.
(2019). Improving microservice-based applications
with runtime placement adaptation. J Internet Serv
Appl, 10(1):4.
Sanctis, M., Muccini, H., and Vaidhyanathan, K. (2020a).
Data-driven adaptation in microservice-based iot ar-
chitectures. In 2020 IEEE International Conference
on Software Architecture Companion (ICSA-C).
Sanctis, M. D., Muccini, H., and Vaidhyanathan, K.
(2020b). Data-driven Adaptation in Microservice-
based IoT Architectures. In 2020 IEEE Interna-
tional Conference on Software Architecture Compan-
ion (ICSA-C), pages 59–62.
Saputri, T. R. D. and Lee, S.-W. (2020). The application of
machine learning in self-adaptive systems: A system-
atic literature review. In IEEE Access. IEEE Access.
Siqueira, B. R., Ferrari, F. C., Vogel, T., and Lemos, R. d.
(2020). Micro-controllers: Promoting Structurally
Flexible Controllers in Self-Aware Computing Sys-
tems. In 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems
Companion (ACSOS-C), pages 188–193.
ˇ
Stefani
ˇ
c, P., Cigale, M., Jones, A. C., Knight, L., Taylor,
I., Istrate, C., Suciu, G., Ulisses, A., Stankovski, V.,
Taherizadeh, S., Salado, G. F., Koulouzis, S., Mar-
tin, P., and Zhao, Z. (2019). SWITCH workbench:
A novel approach for the development and deploy-
ment of time-critical microservice-based cloud-native
applications. Future Generation Computer Systems,
99:197–212.
Tefera, G., She, K., and Deeba, F. (2019). Decentral-
ized Adaptive Latency-Aware Cloud-Edge-Dew Ar-
chitecture for Unreliable Network. In Proceedings of
the 2019 11th International Conference on Machine
Learning and Computing, ICMLC ’19, pages 142–
146, New York, NY, USA. Association for Computing
Machinery.
Wang, R., Ying, S., Li, M., and Jia, S. (2020). HSACMA: a
hierarchical scalable adaptive cloud monitoring archi-
tecture. Software Qual J, 28(3):1379–1410.
Wang, W., Fan, L., Huang, P., and Li, H. (2019). A New
Data Processing Architecture for Multi-Scenario Ap-
plications in Aviation Manufacturing. IEEE Access,
7:83637–83650. Conference Name: IEEE Access.
Wang, X., Feng, Z., and Huang, K. (2018). D3L-Based
Service Runtime Self-Adaptation Using Replanning.
IEEE Access, 6:14974–14995. Conference Name:
IEEE Access.
Wang, Y. (2019). Towards service discovery and autonomic
version management in self-healing microservices ar-
chitecture. In Proceedings of the 13th European Con-
ference on Software Architecture - Volume 2, ECSA
’19, pages 63–66, New York, NY, USA. Association
for Computing Machinery.
Wanigasekara, N. (2015a). A semi lazy bandit approach
for intelligent service discovery in iot applications. In
Adjunct Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2015 ACM Interna-
tional Symposium on Wearable Computers. Associa-
tion for Computing Machinery.
Wanigasekara, N. (2015b). A semi lazy bandit approach
for intelligent service discovery in IoT applications.
In Adjunct Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM Inter-
national Symposium on Wearable Computers, Ubi-
Comp/ISWC’15 Adjunct, pages 503–508, New York,
NY, USA. Association for Computing Machinery.
ICSOFT 2021 - 16th International Conference on Software Technologies
530