Bruder, A. M., Shields, N., Dodd, K. J., and Taylor, N. F.
(2017). Prescribed exercise programs may not be ef-
fective in reducing impairments and improving activ-
ity during upper limb fracture rehabilitation: a system-
atic review. Journal of Physiotherapy, 63(4):205–220.
Chen, S.-H., Lien, W.-M., Wang, W.-W., Lee, G.-D., Hsu,
L.-C., Lee, K.-W., Lin, S.-Y., Lin, C.-H., Fu, L.-C.,
Lai, J.-S., Luh, J.-J., and Chen, W.-S. (2016). Assis-
tive control system for upper limb rehabilitation robot.
IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering, 24(11):1199–1209.
Gates, D. H., Walters, L. S., Cowley, J., Wilken, J. M., and
Resnik, L. (2015). Range of motion requirements for
upper-limb activities of daily living. American Jour-
nal of Occupational Therapy, 70(1):7001350010p1.
Huang, X., Naghdy, F., Naghdy, G., Du, H., and Todd, C.
(2018). The Combined Effects of Adaptive Control
and Virtual Reality on Robot-Assisted Fine Hand Mo-
tion Rehabilitation in Chronic Stroke Patients: A Case
Study. Journal of Stroke and Cerebrovascular Dis-
eases, 27(1):221–228.
Jutinico, A. L., Jaimes, J. C., Escalante, F. M., Perez-Ibarra,
J. C., Terra, M. H., and Siqueira, A. A. G. (2017).
Impedance control for robotic rehabilitation: A robust
markovian approach. Frontiers in Neurorobotics, 11.
Lee, J., Kim, M., and Kim, K. (2017). A control scheme to
minimize muscle energy for power assistant robotic
systems under unknown external perturbation. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 25(12):2313–2327.
Li, Z., Huang, Z., He, W., and Su, C. Y. (2017). Adaptive
impedance control for an upper limb robotic exoskele-
ton using biological signals. IEEE Transactions on
Industrial Electronics, 64(2):1664–1674.
Linda, N., Maia, M., Hennen, L., Wolbring, G., Bratan, T.,
Kukk, P., Cas, J., Capari, L., Krieger-Lamina, J., and
Mordini, E. (2018). Assistive technologies for people
with disabilities - part ii: Current and emerging tech-
nologies.
Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P.,
Brull, A., and Jung, J. H. (2019a). Inclusive and
seamless control framework for safe robot-mediated
therapy for upper limbs rehabilitation. Mechatronics,
58:70–79.
Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P.,
Brull, A., and Jung, J. H. (2019b). Inclusive and
seamless control framework for safe robot-mediated
therapy for upper limbs rehabilitation. Mechatronics,
58(February):70–79.
Marchal-Crespo, L. and Reinkensmeyer, D. J. (2009). Re-
view of control strategies for robotic movement train-
ing after neurologic injury. Journal of NeuroEngineer-
ing and Rehabilitation, 6(1).
McHugh, G., Swain, I. D., and Jenkinson, D. (2013). Treat-
ment components for upper limb rehabilitation after
stroke: a survey of UK national practice. Disability
and Rehabilitation, 36(11):925–931.
Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., and Xie,
S. S. (2015). Recent development of mechanisms and
control strategies for robot-assisted lower limb reha-
bilitation. Mechatronics, 31:132–145.
Miao, Q., Peng, Y., Liu, L., McDaid, A., and Zhang, M.
(2020). Subject-specific compliance control of an
upper-limb bilateral robotic system. Robotics and Au-
tonomous Systems, 126:103478.
Milicin, C. and S
ˆ
ırbu, E. (2018). A comparative study of re-
habilitation therapy in traumatic upper limb peripheral
nerve injuries. NeuroRehabilitation, 42(1):113–119.
Molteni, F., Gasperini, G., Cannaviello, G., and Guanziroli,
E. (2018). Exoskeleton and end-effector robots for up-
per and lower limbs rehabilitation: Narrative review.
PM&R, 10:S174–S188.
Munih, M. and Bajd, T. (2011). Rehabilitation robotics.
Technology and Health Care, 19(6):483 – 495.
Olanrewaju, O. A., Faieza, A. A., and Syakirah, K. (2015).
Application of robotics in medical fields: Rehabili-
tation and surgery. Int. J. Comput. Appl. Technol.,
52(4):251–256.
Ritchie, P. (2003). Sports injuries: Mechanisms, prevention,
treatment. second edition. Arthroscopy: The Journal
of Arthroscopic & Related Surgery, 19(4):448.
Song, P., Yu, Y., and Zhang, X. (2017). Impedance con-
trol of robots: An overview. In 2017 2nd Interna-
tional Conference on Cybernetics, Robotics and Con-
trol (CRC). IEEE.
Trochimczuk, R., Huscio, T., Grymek, S., and Szalewska,
D. (2018). Rehabilitation device supporting active
and passive upper limb exercises. Current Science,
115:868–873.
Wattchow, K. A., McDonnell, M. N., and Hillier, S. L.
(2018). Rehabilitation interventions for upper limb
function in the first four weeks following stroke: A
systematic review and meta-analysis of the evidence.
Archives of Physical Medicine and Rehabilitation,
99(2):367–382.
Wu, Q., Wang, X., Chen, B., and Wu, H. (2018). Develop-
ment of an RBFN-based neural-fuzzy adaptive control
strategy for an upper limb rehabilitation exoskeleton.
Mechatronics, 53(June):85–94.
Wu, Q. and Wu, H. (2018). Development, dynamic mod-
eling, and multi-modal control of a therapeutic ex-
oskeleton for upper limb rehabilitation training. Sen-
sors (Switzerland), 18(11).
ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics
692