hybrid models should also be evaluated to potentially
increase model accuracy. We will explore other deep
learning models such as CNN-LSTM model (Livieris
et al., 2020), which has been proven successful in
forecasting time series data.
In next phase of the project, in addition to
increasing model sample size, we will be using
corresponding maintenance data for more accurate
forecasting. We will expand our model further using
the fault detection codes to identify data-driven
Remaining Useful Life (RUL) estimation for systems
with abrupt failures. The patterns and trends of
forecasted data our analysis reveals will be used for
condition monitoring and identifying abnormal
operating conditions.
REFERENCES
Allaro HB (2018) A Time Series Analysis of Structural
Break Time in Ethiopian GDP, Export and Import. J
Glob Econ 6: 303. doi: 10.4172/2375-4389.1000303
Akaike, H. (1985), "Prediction and entropy", in Atkinson,
A. C.; Fienberg, S. E. (eds.), A Celebration of Statistics,
Springer, pp. 1–24
Basu, S., Li, X. Q. & Michailidis, G. (2019), ‘Low rank and
structured modeling of high-dimensional vector
autoregressions’, IEEE Transactions on Signal
Processing 67(5), 1207–1222
Dai, X. and Gao, Z. (2013). From Model, Signal to
Knowledge: A Data-Driven Perspective of Fault
Detection and Diagnosis, IEEE Transactions on
Industrial Informatics, vol. 9, (no. 4).
Dickey, D. A.; Fuller, W. A. (1979). "Distribution of the
Estimators for Autoregressive Time Series with a Unit
Root". Journal of the American Statistical Association.
74 (366): 427–431. doi:10.1080/01621459.1979.
10482531
Durbin, J.; Watson, G. S. (1951). "Testing for Serial
Correlation in Least Squares Regression, II".
Biometrika. 38 (1–2): 159–179. doi:10.1093/biomet/
38.1-2.159
Granger, C.W.J. (1980). "Testing for causality: A personal
viewpoint". Journal of Economic Dynamics and
Control. 2: 329–352. doi:10.1016/0165-1889(80)
90069-X
Fu, Y., Huang, D., Qin, N., Liang, K. and Yang, Y. (2018).
High-Speed Railway Bogie Fault Diagnosis Using
LSTM Neural Network, 37th Chinese Control
Conference.
Ha, Y., Chang H. (2018). Forecasting the volatility of stock
price index: A hybrid model integrating LSTM with
multiple GARCH-type models, Expert Systems with
Applications, vol 103.
Hannan, E. J., and B. G. Quinn (1979), "The Determination
of the order of an autoregression", Journal of the Royal
Statistical Society, Series B, 41: 190–195Park, D.C., El-
Sharkawi, M.A., Marks, R.J., Atlas, L.E. and Damborg,
M.J. (1991). Electric load forecasting using an artificial
neural network, IEEE Transactions on Power Systems,
vol. 6, no. 2.
Helbing, G. & Ritter, M. (2018). Deep Learning for fault
detection in wind turbines, Renewable and Sustainable
Energy Reviews, vol 98.
Kwiatkowski, D.; Phillips, P. C. B.; Schmidt, P.; Shin, Y.
(1992). "Testing the null hypothesis of stationarity
against the alternative of a unit root". Journal of
Econometrics. 54 (1–3): 159–178. doi:10.1016/0304-
4076(92)90104-Y
Lee J., Wu F., Zhao W., Ghaffari M., Liao L., Siegel D.
Prognostics and health management design for rotary
machinery systems—Reviews, methodology and
applications Mech Syst Signal Process, 42 (1–2)
(2014), pp. 314-334
Livieris, I.E., Pintelas, E. & Pintelas, P. A CNN–LSTM
model for gold price time-series forecasting. Neural
Comput & Applic. 32, 17351–17360 (2020).
Seabold, S., & Perktold, J. (2010). Statsmodels:
Econometric and Statistical Modeling with Python.
Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger
causality analysis in neuroscience and neuroimaging.
The Journal of neuroscience: the official journal of the
Society for Neuroscience, 35(8), 3293–3297.
https://doi.org/10.1523/JNEUROSCI.4399-14.2015
Schwarz, Gideon E. (1978), "Estimating the dimension of a
model", Annals of Statistics, 6 (2): 461–464,
doi:10.1214/aos/1176344136
Zivot, E. and Wang, J. (2006) Vector Autoregressive
Models for Multivariate Time Series. Modeling
Financial Time Series with S-PLUS®. Springer, New
York, NY doi: 10.1007/978-0-387-32348-0_11.