tionships between design smells removals and refac-
torings. In Proceedings of the 15th International Con-
ference on Software Technologies - ICSOFT,, pages
212–219. INSTICC, SciTePress.
Bai, S., Kolter, J. Z., and Koltun, V. (2018). An em-
pirical evaluation of generic convolutional and re-
current networks for sequence modeling. CoRR,
abs/1803.01271.
Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.
Dai, W., Yang, Q., Xue, G., and Yu, Y. (2007). Boosting for
transfer learning. In Ghahramani, Z., editor, Machine
Learning, Proceedings of the Twenty-Fourth Interna-
tional Conference (ICML 2007), Corvallis, Oregon,
USA, June 20-24, 2007, volume 227, pages 193–200.
ACM.
Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik,
A., and De Lucia, A. (2018). Detecting code smells
using machine learning techniques: Are we there
yet? In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 612–621.
e Abreu, F. B. and Carapuça, R. (1994). Candidate metrics
for object-oriented software within a taxonomy frame-
work. Journal of Systems and Software, 26(1):87–96.
Girish Suryanarayana, Ganesh Samarthyam, T. S. (2014).
Refactoring for Software Design Smells: Managing
Technical Debt. Morgan Kaufmann.
Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M.,
and Schölkopf, B. (2006). Correcting sample selec-
tion bias by unlabeled data. In Schölkopf, B., Platt,
J. C., and Hofmann, T., editors, Advances in Neural
Information Processing Systems 19: Proceedings of
the 2006 Conference, Vancouver, British Columbia,
Canada, December 4-7, 2006, pages 601–608. MIT
Press.
Imran, A. (2019). Design smell detection and analysis for
open source java software. In 2019 IEEE Interna-
tional Conference on Software Maintenance and Evo-
lution (ICSME), pages 644–648.
Kitchenham, B. A., Mendes, E., and Travassos, G. H.
(2007). Cross versus within-company cost estimation
studies: A systematic review. IEEE Transactions on
Software Engineering, 33(5):316–329.
Lumini, A. and Nanni, L. (2019). Deep learning and trans-
fer learning features for plankton classification. Eco-
logical informatics, 51:33–43.
Mannor, S., Peleg, D., and Rubinstein, R. (2005). The cross
entropy method for classification. In Proceedings
of the 22Nd International Conference on Machine
Learning, ICML ’05, pages 561–568, New York, NY,
USA. ACM.
Nam, J., Fu, W., Kim, S., Menzies, T., and Tan, L. (2017).
Heterogeneous defect prediction. IEEE Transactions
on Software Engineering, 44(9):874–896.
Pan, S., Tsang, I., Kwok, J., and Yang, Q. (2011). Domain
adaptation via transfer component analysis. IEEE
transactions on neural networks / a publication of the
IEEE Neural Networks Council, 22:199–210.
Sharma, T., Efstathiou, V., Louridas, P., and Spinellis, D.
(2019). On the feasibility of transfer-learning code
smells using deep learning. CoRR, abs/1904.03031.
Sharma, T., Mishra, P., and Tiwari, R. (2016). Designite -
a software design quality assessment tool. In 2016
IEEE/ACM 1st International Workshop on Bringing
Architectural Design Thinking Into Developers’ Daily
Activities (BRIDGE), pages 1–4.
Stone, M. (1974). Cross-validatory choice and assessment
of statistical predictions. Roy. Stat. Soc., 36:111–147.
Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2015). Chapter 2 - design smells. In Suryanarayana,
G., Samarthyam, G., and Sharma, T., editors, Refac-
toring for Software Design Smells, pages 9 – 19. Mor-
gan Kaufmann, Boston.
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy,
E. (2016). Hierarchical attention networks for docu-
ment classification. In Proceedings of NAACL-HLT
2016, pages 1480–1489, San Diego, California. Asso-
ciation for Computational Linguistics.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. (2020). A comprehensive sur-
vey on transfer learning. Proceedings of the IEEE,
109(1):43–76.
Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks
317