Khaled, S., El-Tazi, N., Mokhtar, H. (2018). Detecting Fake
Accounts on Social Media. 2018 IEEE International
Conference on Big Data (Big Data).
doi:10.1109/bigdata.2018.862191
Rao, K., Gutha, S., Raju, B. (2020). Detecting Fake
Account On Social Media Using Machine Learning
Algorithms. International Journal of Control and
Automation. 13. 95-100
Isaac, D., Siordia, O., Moctezuma, D., (2016). Features
combination for the detection of malicious Twitter
accounts. 1-6. 10.1109/ROPEC.2016.7830626
Bouckaert, R., Eibe, F., Hall, M., & Holmes, G.,
Pfahringer, B., Reutemann, P., Witten, I. (2010).
WEKA—experiences with a Java Open-Source Project.
Journal of Machine Learning Research.
Cresci, S., Pietro, R., Petrocchi, M., Spognardi, A., Tesconi,
M. (2015). Fame for sale: efficient detection of fake
Twitter followers. arXiv:1509.04098 09/2015. Elsevier
Decision Support Systems, Volume 80, Pages 56–71.
Babatunde, O., Armstrong, L., Leng, J., Diepeveen, D.
(2014). A Genetic Algorithm-Based Feature Selection.
International Journal of Electronics Communication
and Computer Engineering, 5(4), 899-905
Ramos-Pollán, R., Guevara-López, M.A., Suárez-Ortega,
C. et al. (2012) Discovering Mammography-based
Machine Learning Classifiers for Breast Cancer
Diagnosis. J Med Syst 36, 2259–2269 (2012).
DOI:10.1007/s10916-011-9693-2
Ringnér M. (2008) What is principal component analysis?
Nat Biotechnol. Mar;26(3):303-4. doi: 10.1038/nbt030
8-303. PMID: 18327243.
Zar, J. (2014). Spearman Rank Correlation: Overview.
Wiley StatsRef: Statistics Reference Online
Alsaleh, M., Alarif, A., Al-Salman, A., AlFayez, M.,
& Almuhaysin, A. (2014). TSD: Detecting Sybil
Accounts in Twitter. 2014 13th International
Conference on Machine Learning and Applications,
462-469. doi:10.1109/ICMLA.2014.8
Kotsiantis, S. (2007). Supervised Machine Learning: A
Review of Classification Techniques. Informatica
(Ljubljana). 31.
Xindong, W., Vipin, K., Quinlan, R., Ghosh, J., Yang, Q.,
Motoda, H., Mclachlan, G., Liu, B., Yu, P., Zhou, Z.,
Steinbach, M., Hand, D., Steinberg, D., (2007). Top 10
algorithms in data mining. Knowledge and Information
Systems. 14. 10.1007/s10115-007-0114-2.
Bhargava, N., Sharma, G., Bhargava, R., Mathuria, M.
(2013). Decision Tree Analysis on J48 Algorithm for
Data Mining. International Journal of Advanced
Research in Computer Science and Software
Engineering Volume 3, Issue 6, (2013 June). ISSN:
2277 128X
Jehad, A., Rehanullah, K., Nasir, A., Imran, M. (2012 SEP).
Random Forests and Decision Trees. International
Journal of Computer Science Issues (IJCSI). vol 9,
Issue 5, No. 3. 1694-0814
Pretorius, A., Bierman, S., Steel, S. (2016). A meta-analysis
of research in random forests for classification. IEEE
Conference 2016. 1-610.1109/RoboMech.2016.78131
71
Mennitt, D., Sherrill, K., Fristrup, K. (2014). A geospatial
model of ambient sound pressure levels in the
contiguous United States. The Journal of the Acoustical
Society of America (2014 MAY). DOI:
10.1121/1.4870481
Kolahdouzan, M., Shahabi, C. (2004). Voronoi- Based K
Nearest Neighbor Search for Spatial Network
Databases. Proceeding of the 30th VLDB Conference.
30. 840-851. 10.1016/B978-012088469-8.50074-7.
Mustaqim, T., Umam, K., Muslim, M. (2020). Twitter text
mining for sentiment analysis on government’s
response to forest fires with vader lexicon polarity
detection and k-nearest neighbor algorithm. Journal of
Physics: Conference Series 1567. 032024. DOI:
10.1088/1742-6596/1567/3/03202
Moosavian, A., Ahmadi, H., Tabatabaeefar, A., Khazaee,
M. (2012). Shock and Vibration 20 (2013) 263–272
263. DOI 10.3233/SAV-2012-00742blog/2016/6/4/
time-series-analysis-fitbit-using-dtw-and-knn
Aridas, C., Karlos, S. Kanas, V. Fazakis, N. Kotsiantis, S.
(2019). Uncertainty Based Under-Sampling for
Learning Naive Bayes Classifiers Under Imbalanced
Data Sets. IEEE Access. PP(99). 1-1. DOI:10.1109/
ACCESS.2019.2961784
Suppala, K., Rao, N. (2019). Sentiment Analysis Using
Naive Bayes Classifier. International Journal of
Innovative Technology and Exploring Engineering
(IJITEE) ISSN: 2278-3075, Volume-8 Issue-8 June,
2019.
Raschka, S. (2014). Naive Bayes and Text Classification.
arXiv:1410.5329v4 (Feb 2017).