Media, 13(01), 15-25. Retrieved from
ojs.aaai.org/index.php/ICWSM/article/view/3205
Alizadeh, M., Weber, I., Cioffi-Revilla, C. et al. Psychology
and morality of political extremists: evidence from
Twitter language analysis of alt-right and Antifa. EPJ
Data Sci. 8, 17 (2019). https://doi.org/
10.1140/epjds/s13688-019-0193-9
Angeli, G., Premkumar, M. J. J, Manning, C. D. (2015).
Leveraging Linguistic Structure for Open Domain
Information Extraction. Proc. of the 53rd Ann. Mtg. of
the ACL and the 7th Int. Joint Conference on Natural
Language Processing (V. 1) (pp. 344–354). Beijing,
ACL.
Atanasov, A., Morales, G., & Nakov, P. (2019). Predicting
the Role of Political Trolls in Social Media. ArXiv,
abs/1910.02001.
Badawy, A., Ferrara, E., and Lerman, K., (2018)
"Analyzing the Digital Traces of Political
Manipulation: The 2016 Russian Interference Twitter
Campaign," IEEE/ACM Int. ASONAM, pp. 258-265,
2018.
Cambria, E., Chandra, P., Sharma, A., Hussain, A. (2010).
Do Not Feel The Trolls. CEUR Workshop Proceedings.
664.
Chun, S. A., Holowczak, R., Dharan, K. N., Wang, R.,
Basu, S., & Geller, J. (2019). Detecting political bias
trolls in Twitter data. In A. Bozzon, F. J. D. Mayo, & J.
Filipe (Eds.), WEBIST 2019 - Proc. of the 15th Int.
Conf. on Web Information Systems and Technologies
(pp. 334-342).
Cypher (query language). (n.d.). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Cypher_(query_language
)
Data formats. (n.d.). Retrieved from spacy.io:
https://spacy.io/api/data-formats#named-entities
displaCy Named Entity Visualizer. (n.d.). Retrieved from
explosion.ai/: https://explosion.ai/demos/displacy-ent
Ehrlinger, L. and Wöß, W. (2016). Towards a Definition of
Knowledge Graphs.
Etudo, U., Yoon, V.Y., Yaraghi, N. (2019). From Facebook
to the Streets: Russian Troll Ads and Black Lives
Matter Protests. HICSS.
Fivethirtyeight, Russian-troll-tweets, https://github.com/
fivethirtyeight/russian-troll-tweets/ Retr. 1/ 2019.
Ghanem B., Buscaldi D., Rosso P. (2020). TexTrolls:
Identifying Trolls on Twitter with Textual and
Affective Features. In: Proc. Workshop on Online
Misinformation- and Harm-Aware Recommender
Systems (OHARS), Co-located with RecSys 2020,
CEUR Workshop Proceedings.CEUR-WS.org, vol.
2758, pp. 4-22
Golino, H., Christensen, A., Moulder, R., Kim, S., Boker,
Steven. (2020). Modeling latent topics in social media
using Dynamic Exploratory Graph Analysis: The case
of the right-wing and left-wing trolls in the 2016 US
elections. 10.31234/osf.io/tfs7c.
Hitzler, P., Lehmann, J., Polleres, A. (2014). Logics for the
Semantic Web, Editor(s): Jörg H. Siekmann, Handbook
of the History of Logic, North-Holland, Volume 9,
Pages 679-710.
Im, J., Chandrasekharan, E., Sargent, J., Lighthammer, P.,
Denby, T., Bhargava, A., Hemphill, L., Jurgens, D., &
Gilbert, E. (2020). Still out there: Modeling and
Identifying Russian Troll Accounts on Twitter. 12th
ACM Conference on Web Science.
Iqbal, S., Keshtkar, F., Chun, S. A. (2020) Extract Semantic
Pattern from Trolling Data, FLAIRS-33 (pp. 509-514).
Iqbal, S., Chun, S. A., Keshtkar, F. (2020) Using
Computational Linguistics to Extract Semantic Patterns
from Trolling Data.Proceedings of IEEE 14th
International Conference on Semantic Computing
(ICSC 2020): 369-374
Jachim, P., Sharevski, F., Treebridge, P. (2020).
TrollHunter [Evader]: Automated Detection [Evasion]
of Twitter Trolls During the COVID-19 Pandemic.
New Security Paradigms Workshop (pp. 59-75). New
York, NY: ACM.
Ji, X., Chun, S. A., and Geller, J., "Monitoring Public
Health Concerns Using Twitter Sentiment
Classifications," 2013 IEEE International Conference
on Healthcare Informatics, Philadelphia, PA, USA,
2013, pp. 335-344, doi: 10.1109/ICHI.2013.47.
Kersting, J., Geierhos, M. (2020). Neural Learning for
Aspect Phrase Extraction and Classification in
Sentiment Analysis. The 33rd International FLAIRS
(pp. 282-285).
K-means clustering. (n.d.). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/K-means_clustering
Koch, K., 2020. A Friendly Introduction to Text Clustering,
https://towardsdatascience.com/a-friendly-introduction
-to-text-clustering-fa996bcefd04, Retrieved Jan. 29,
2021.
Kumar, S., Spezzano, F., Subrahmanian, V.S., 2014.
Accurately detecting trolls in slashdot zoo via
decluttering. In Proc. of ASONAM ’14, 188–195,
Beijing, China.
Lewinski, D., Hasan, M. R., “Russian Troll Account
Classification with Twitter and Facebook Data”, arXiv
e-prints, 2021.
Linvill, D., Boatwright, B., Grant, W., Warren, P. (2019).
“The Russians are Hacking my Brain!” investigating
Russia's internet research agency twitter tactics during
the 2016 US presidential campaign. Computers in
Human Behavior. 99. 10.1016/j.chb.2019.05.027.
Miao, L., Last, M., Litvak, M. (2020). Detecting Troll
Tweets in a Bilingual Corpus. Proc. of the 12th
Language Resources and Evaluation Conf. (pp. 6247–
6254). Marseille, France: European Language
Resources Association.
McKinney, W., 2017. Python for Data Analysis, Data
Wrangling with Pandas, NumPy, and IPython. O'Reilly.
Mojica, L. G., 2017. A Trolling Hierarchy in Social Media
and a Conditional Random Field for Trolling (Richard
Socher, 2013) Detection, arXiv:1704.02385v1 [cs.CL].
Monakhov, S. (2020) Early detection of internet trolls:
Introducing an algorithm based on word pairs / single
words multiple repetition ratio. PLoS ONE 15(8):
e0236832. https://doi.org/10.1371/journal.pone.0236
832