REFERENCES
Batini, C. and Scannapieco, M. (2016). Data and Informa-
tion Quality - Dimensions, Principles and Techniques.
Data-Centric Systems and Applications. Springer.
Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Sil-
veira, P., Strauch, S., and Tluczek, M. (2010). An in-
tegrated solution for runtime compliance governance
in SOA. In Service-Oriented Computing, pages 122–
136. Springer.
Bose, R. P. J. C., Mans, R. S., and van der Aalst, W. M. P.
(2013). Wanna improve process mining results? In
2013 IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pages 127–134.
Brachman, R. J. and Anand, T. (1996). The process of
knowledge discovery in databases. In Advances in
Knowledge Discovery and Data Mining, pages 37–57.
AAAI/MIT Press.
Chang, J. (2016). Business Process Management Systems:
Strategy and Implementation. CRC Press.
Cristalli, E., Serra, F., and Marotta, A. (2018). Data quality
evaluation in document oriented data stores. In Ad-
vances in Conceptual Modeling - ER 2018 Workshops,
volume 11158 of LNCS, pages 309–318. Springer.
Delgado, A. and Calegari, D. (2020). Towards a unified
vision of business process and organizational data. In
XLVI Latin American Computing Conference, CLEI
2020, page To appear. IEEE.
Delgado, A., Calegari, D., and Arrigoni, A. (2016). To-
wards a generic BPMS user portal definition for the
execution of business processes. In XLII Latin Amer-
ican Computer Conference - Selected Papers, CLEI
2016, volume 329 of ENTCS, pages 39–59. Elsevier.
Delgado, A., Marotta, A., Gonz
´
alez, L., Tansini, L., and
Calegari, D. (2020). Towards a data science frame-
work integrating process and data mining for orga-
nizational improvement. In 15th Intl. Conf. on Soft-
ware Technologies, ICSOFT 2020, pages 492–500.
ScitePress.
Delgado, A., Weber, B., Ruiz, F., de Guzm
´
an, I. G. R., and
Piattini, M. (2014). An integrated approach based on
execution measures for the continuous improvement
of business processes realized by services. Informa-
tion and Software Technology, 56(2):134–162.
Dumas, M., van der Aalst, W. M., and ter Hofstede, A. H.
(2005). Process-Aware Information Systems: Bridg-
ing People and Software through Process Technology.
John Wiley & Sons, Inc.
Eck, van, M., Lu, X., Leemans, S., and Aalst, van der, W.
(2015). Pm2 : a process mining project methodol-
ogy. In Advanced Inf. Systems Engineering: 27th Intl.
Conf., CAiSE 2015, LNCS, pages 297–313. Springer.
Gonz
´
alez, L. and Delgado, A. (2021). Towards com-
pliance requirements modeling and evaluation of e-
government inter-organizational collaborative busi-
ness processes. In 54th Hawaii Intl. Conf. on System
Sciences, HICSS 2021, pages 1–10. ScholarSpace.
Gupta, M. and Chandra, P. (2020). A comprehensive survey
of data mining. Int. Journal of Inf. Technology.
Hashmi, M., Governatori, G., Lam, H.-P., and Wynn, M. T.
(2018). Are we done with business process compli-
ance: state of the art and challenges ahead. Knowledge
and Information Systems, 57(1):79–133.
Hecht, R. and Jablonski, S. (2011). Nosql evaluation: A use
case oriented survey. In 2011 Intl. Conf. on Cloud and
Service Computing, pages 336–341.
IEEE (2020). Task Force on Data Science and Advanced
Analytics. http://www.dsaa.co/.
Kharbili, M. E., Ma, Q., Kelsen, P., and Pulvermueller, E.
(2011). CoReL: Policy-based and model-driven reg-
ulatory compliance management. In IEEE 15th Int.
Enterprise Dist. Object Computing Conf. IEEE.
Khasawneh, T. N., AL-Sahlee, M. H., and Safia, A. A.
(2020). Sql, newsql, and nosql databases: A compar-
ative survey. In 2020 11th Intl. Conf. on Information
and Communication Systems (ICICS), pages 013–021.
Knuplesch, D. and Reichert, M. (2017). A visual language
for modeling multiple perspectives of business pro-
cess compliance rules. Software & Systems Modeling,
16(3):715–736.
Knuplesch, D., Reichert, M., Ly, L. T., Kumar, A., and
Rinderle-Ma, S. (2013). Visual modeling of business
process compliance rules with the support of multi-
ple perspectives. In Conceptual Modeling, pages 106–
120. Springer.
Mariscal, G., Marb
´
an, O., and Fern
´
andez, C. (2010). A sur-
vey of data mining and knowledge discovery process
models and methodologies. Knowledge Engineering
Review, 25(2):137–166.
Shearer, C. (2000). The crisp-dm model: The new blueprint
for data mining. Journal of Data Warehousing, 5(4).
Sumathi, S. and Sivanandam, S. N. (2006). Introduction to
Data Mining and its Applications, volume 29 of Stud-
ies in Computational Intelligence. Springer.
Tepandi, J., Lauk, M., Linros, J., Raspel, P., Piho, G., Pap-
pel, I., and Draheim, D. (2017). The Data Qual-
ity Framework for the Estonian Public Sector and
Its Evaluation. In Trans on Large-Scale Data- and
Knowl-Cent Sys XXXV, LNCS, pages 1–26. Springer.
Turetken, O., Elgammal, A., van den Heuvel, W., and Papa-
zoglou, M. P. (2012). Capturing compliance require-
ments: A pattern-based approach. IEEE Software,
29(3):28–36.
Valverde, M. C., Vallespir, D., Marotta, A., and Panach,
J. I. (2014). Applying a data quality model to exper-
iments in software engineering. In Advances in Con-
ceptual Modeling - ER 2014 Workshops, volume 8823
of LNCS, pages 168–177. Springer.
van der Aalst, W. M. P. (2016). Process Mining - Data
Science in Action, Second Edition. Springer.
Verhulst, R. (2016). Evaluating quality of event data within
event logs:an extensible framework. Master’s thesis,
Eindhoven University of Technology.
A Methodology for Integrated Process and Data Mining and Analysis towards Evidence-based Process Improvement
437