erence process with other machine-learning methods,
e.g., regression or clustering, and different sorts of in-
put data, e.g., images, videos, and natural-language
text, in future work. A knowledge graph may serve
for the documentation of the knowledge regarding the
proper selection of the approach for reliability check-
ing.
REFERENCES
Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and
Yoo, S. (2015). The Oracle Problem in Software Test-
ing: A Survey. IEEE Trans. Software Eng., 41(5):507–
525.
Caetano, N., Cortez, P., and Laureano, R. M. S. (2014).
Using Data Mining for Prediction of Hospital Length
of Stay: An Application of the CRISP-DM Method-
ology. In Cordeiro, J., Hammoudi, S., Maciaszek,
L. A., Camp, O., and Filipe, J., editors, Enterprise
Information Systems - 16th International Conference,
ICEIS 2014, Lisbon, Portugal, April 27-30, 2014, Re-
vised Selected Papers, volume 227 of Lecture Notes
in Business Information Processing, pages 149–166.
Springer.
Capra, A., Castorina, A., Corchs, S., Gasparini, F., and
Schettini, R. (2006). Dynamic Range Optimization
by Local Contrast Correction and Histogram Image
Analysis. In 2006 Digest of Technical Papers Inter-
national Conference on Consumer Electronics, pages
309–310, Las Vegas, NV, USA. IEEE.
Chen, T. Y., Kuo, F.-C., Liu, H., Poon, P.-L., Towey, D.,
Tse, T. H., and Zhou, Z. Q. (2018). Metamorphic Test-
ing: A Review of Challenges and Opportunities. ACM
Comput. Surv., 51(1):4:1–4:27.
Cheney, E. W. and Kincaid, D. R. (2012). Numerical math-
ematics and computing. Cengage Learning.
Cruz, R. M. O., Sabourin, R., and Cavalcanti, G. D. C.
(2018). Dynamic classifier selection: Recent advances
and perspectives. Inf. Fusion, 41:195–216.
da Rocha, B. C. and de Sousa Junior, R. T. (2010). Identify-
ing bank frauds using CRISP-DM and decision trees.
International Journal of Computer Science and Infor-
mation Technology, 2(5):162–169.
Didaci, L., Giacinto, G., Roli, F., and Marcialis, G. L.
(2005). A study on the performances of dynamic
classifier selection based on local accuracy estimation.
Pattern Recognit., 38(11):2188–2191.
Guo, H., Shi, W., and Deng, Y. (2006). Evaluating sen-
sor reliability in classification problems based on evi-
dence theory. IEEE Trans. Syst. Man Cybern. Part B,
36(5):970–981.
Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
quarterly, pages 75–105.
Moreira, D., Furtado, A. P., and Nogueira, S. C. (2020).
Testing acoustic scene classifiers using Metamorphic
Relations. In IEEE International Conference On Ar-
tificial Intelligence Testing, AITest 2020, Oxford, UK,
August 3-6, 2020, pages 47–54. IEEE.
Moro, S., Cortez, P., and Rita, P. (2014). A data-driven
approach to predict the success of bank telemarketing.
Decis. Support Syst., 62:22–31.
Moro, S., Laureano, R., and Cortez, P. (2011). Using data
mining for bank direct marketing: An application of
the crisp-dm methodology. Publisher: EUROSIS-ETI.
Moroney, N. (2000). Local Color Correction Using Non-
Linear Masking. In The Eighth Color Imaging Confer-
ence: Color Science and Engineering Systems, Tech-
nologies, Applications, CIC 2000, Scottsdale, Ari-
zona, USA, November 7-10, 2000, pages 108–111.
IS&T - The Society for Imaging Science and Tech-
nology.
Reimer, U., T
¨
odtli, B., and Maier, E. (2020). How to Induce
Trust in Medical AI Systems. In Grossmann, G. and
Ram, S., editors, Advances in Conceptual Modeling -
ER 2020 Workshops CMAI, CMLS, CMOMM4FAIR,
CoMoNoS, EmpER, Vienna, Austria, November 3-6,
2020, Proceedings, volume 12584 of Lecture Notes in
Computer Science, pages 5–14. Springer.
Saha, P. and Kanewala, U. (2019). Fault Detection Ef-
fectiveness of Metamorphic Relations Developed for
Testing Supervised Classifiers. In IEEE International
Conference On Artificial Intelligence Testing, AITest
2019, Newark, CA, USA, April 4-9, 2019, pages 157–
164. IEEE.
Segura, S., Fraser, G., S
´
anchez, A. B., and Cort
´
es, A. R.
(2016). A Survey on Metamorphic Testing. IEEE
Trans. Software Eng., 42(9):805–824.
Vriesmann, L. M., Jr, A. S. B., Oliveira, L. S., Koerich,
A. L., and Sabourin, R. (2015). Combining overall
and local class accuracies in an oracle-based method
for dynamic ensemble selection. In 2015 International
Joint Conference on Neural Networks, IJCNN 2015,
Killarney, Ireland, July 12-17, 2015, pages 1–7. IEEE.
Wirth, R. and Hipp, J. (2000). CRISP-DM: Towards a Stan-
dard Process Model for Data Mining. page 11.
Woods, K. S., Kegelmeyer, W. P., and Bowyer, K. W.
(1997). Combination of Multiple Classifiers Using
Local Accuracy Estimates. IEEE Trans. Pattern Anal.
Mach. Intell., 19(4):405–410.
Xie, X., Ho, J. W. K., Murphy, C., Kaiser, G. E., Xu, B., and
Chen, T. Y. (2011). Testing and validating machine
learning classifiers by metamorphic testing. J. Syst.
Softw., 84(4):544–558.
DATA 2021 - 10th International Conference on Data Science, Technology and Applications
134