ing analysis of sperm labeled with MitoTracker™ that
specifically binds to mitochondria in the sperm flag-
ella. The possibility to track sperm movements us-
ing other fluorescent probes may have multiple appli-
cations. Several fluorescence compounds have been
developed that are able to detect changes in calcium
variations, production of reactive oxygen species, mi-
tochondrial activity, etc. meaning that it will be pos-
sible to match either of these functions with sperm
motility patterns. The tool may be useful to test drugs
that modify the motility patterns of subpopulations of
sperm. Moreover, multiple probes may be used at the
same time to explain different biological effects.
The developed framework is publicly available in
our GitLab repository
1
.
ACKNOWLEDGEMENTS
This work was partially supported by Espacio Inter-
disciplinario, Universidad de la Rep
´
ublica, Uruguay.
REFERENCES
Allan, D., van der Wel, C., Keim, N., Caswell, T. A.,
Wieker, D., Verweij, R., Reid, C., Thierry, Grueter,
L., Ramos, K., and et al. (2019). soft-matter/trackpy:
Trackpy v0.4.2.
Alqu
´
ezar-Baeta, C., Gimeno-Martos, S., Miguel-Jim
´
enez,
S., Santolaria, P., Y
´
aniz, J., Palac
´
ın, I., Casao, A., Ce-
bri
´
an-P
´
erez, J.
´
A., Mui
˜
no-Blanco, T., and P
´
erez-P
´
e, R.
(2019). Opencasa: A new open-source and scalable
tool for sperm quality analysis. PLoS computational
biology, 15(1):e1006691.
Bar-Shalom, Y. and Daum, F. (2010). The probabilistic data
association filter. Control Systems, IEEE, 29:82 – 100.
Cooper, T. G. and Yeung, C.-H. (2006). Computer-aided
evaluation of assessment of “grade a” spermatozoa
by experienced technicians. Fertility and sterility,
85(1):220–224.
Dobrucki, J. W. (2013). Fluorescence Microscopy, chap-
ter 3, pages 97–142. John Wiley & Sons, Ltd.
Elia, J., Imbrogno, N., Delfino, M., Mazzilli, R., Rossi, T.,
and Mazzilli, F. (2010). The importance of the sperm
motility classes-future directions. Open Andrology
Journal, 2:42–43.
Fitzgerald, R. J. (1986). Development of practical pda logic
for multitarget tracking by microprocessor. In 1986
American Control Conference, pages 889–898. IEEE.
Goodson, S., White, S., Stevans, A., Bhat, S., Kao, C.-Y.,
Jaworski, S., Marlowe, T., Kohlmeier, M., Mcmillan,
L., Zeisel, S., and O’Brien, D. (2017). Casanova: A
multiclass support vector machine model for the clas-
sification of human sperm motility patterns. Biology
of Reproduction, 97.
1
https://gitlab.fing.edu.uy/pfc-tde/testing-docker
Kumar, N. and Singh, A. K. (2015). Trends of male factor
infertility, an important cause of infertility: A review
of literature. Journal of human reproductive sciences,
8(4):191.
Mortimer, D., Serres, C., Mortimer, S. T., and Jouannet,
P. (1988). Influence of image sampling frequency
on the perceived movement characteristics of progres-
sively motile human spermatozoa. Gamete Research,
20(3):313–327.
Mortimer, S. T. and Swan, M. A. (1999). Effect of image
sampling frequency on established and smoothing-
independent kinematic values of capacitating human
spermatozoa. Human Reproduction, 14(4):997–1004.
Mortimer, S. T., van der Horst, G., and Mortimer, D. (2015).
The future of computer-aided sperm analysis. Asian
journal of andrology, 17(4):545.
Munkres, J. (1957). Algorithms for the assignment and
transportation problems. Journal of the society for in-
dustrial and applied mathematics, 5(1):32–38.
Pulford, G. (2005). Taxonomy of multiple target tracking
methods. IEE Proceedings-Radar, Sonar and Naviga-
tion, 152(5):291–304.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.
(2012). NIH Image to ImageJ: 25 years of image anal-
ysis. Nature methods, 9(7):671–675.
Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G. M.,
Reynolds, G. D., Laplantine, E., Bednarek, S. Y.,
Shorte, S. L., and Eliceiri, K. W. (2017). Trackmate:
An open and extensible platform for single-particle
tracking. Methods, 115:80 – 90. Image Processing
for Biologists.
Urbano, L. F. (2014). Robust Automatic Multi-Sperm Track-
ing in Time-Lapse Images. PhD thesis, TDrexel Uni-
versity.
Urbano, L. F., Masson, P., VerMilyea, M., and Kam, M.
(2017). Automatic tracking and motility analysis of
human sperm in time-lapse images. IEEE Transac-
tions on Medical Imaging, 36(3):792–801.
Vo, B.-N., Mallick, M., bar shalom, Y., Coraluppi, S., III,
R., Mahler, R., and Vo, B.-T. (2015). Multitarget
tracking. Wiley Encyclopedia, pages 1–25.
Walters, J. L., Gadella, B. M., Sutherland, J. M., Nixon, B.,
and Bromfield, E. G. (2020). Male infertility: shining
a light on lipids and lipid-modulating enzymes in the
male germline. Journal of clinical medicine, 9(2):327.
World Health Organization (2010). WHO laboratory man-
ual for the examination and processing of human se-
men.
Yao, D., Zhang, C., Zhu, Z., Huang, J., and Bi, J. (2017).
Trajectory clustering via deep representation learning.
In 2017 International Joint Conference on Neural Net-
works (IJCNN), pages 3880–3887.
Zhang, X., Sun, Q., Huang, Z., Huang, L., and Xiao, Y.
(2019). Immobilizable fluorescent probes for monitor-
ing the mitochondria microenvironment: a next step
from the classic. Journal of Materials Chemistry B,
7(17):2749–2758.
SIGMAP 2021 - 18th International Conference on Signal Processing and Multimedia Applications
110