REFERENCES
Apps, R., Hawkes, R., and et. al., S. A. (2018). Cerebellar
modules and their role as operational cerebellar pro-
cessing units. Cerebellum, 17:654–682.
Barnes, G., Goodbody, S., and Collins, S. (1995). Volitional
control of anticipatory ocular pursuit responses under
stabilized image conditions in humans. Experimental
Brain Research, 106:301–317.
Battle, E. and Broucke, M. (2021). Adaptive internal mod-
els in the optokinetic system. In IEEE Conference on
Decision and Control. Submitted.
Bond, K. and Taylor, J. (2015). Flexible explicit but
rigid implicit learning in a visuomotor adaptation task.
Journal of Neurophysiology, 113:3836–3849.
Broucke, M. E. (2020). Model of the oculomotor sys-
tem based on adaptive internal models. IFAC-
PapersOnLine, 53(2):16430–16437. 21th IFAC World
Congress.
Broucke, M. E. (2021). Adaptive internal model theory
of the oculomotor system and the cerebellum. IEEE
Transactions on Automatic Control.
B
¨
uttner, U. and B
¨
uttner-Ennever, J. (2006). Present con-
cepts of oculomotor organization. Prog. Brain Re-
search, 151:1–42.
B
¨
uttner, U., Waespe, W., and Henn, V. (1976). Duration and
direction of optokinetic after-nystagmus as a function
of stimulus exposure time in the monkey. Arch. Psy-
chiat. Nervenkr., 222:281–291.
Cerminara, N., Apps, R., and Marple-Horvat, D. (2009). An
internal model of a moving visual target in the lateral
cerebellum. J. Physiology, 587(2):429–442.
Churchland, M., Chou, I., and Lisberger, S. (2003). Ev-
idence for object permanence in the smooth-pursuit
eye movements of monkeys. Journal of Neurophysi-
ology, 90:2205–2218.
Cohen, B., Matsuo, V., and Raphan, T. (1977). Quantitative
analysis of the velocity characteristics of optokinetic
mystagmus and optokinetic after-nystagmus. J. Phys-
iology, 270:321–344.
de Brouwer, A., Albaghdadi, M., Flanagan, J., and Gallivan,
J. (2018). Using gaze behavior to parcellate the ex-
plicit and implicit contributions to visuomotor learn-
ing. Journal of Neurophysiology, 120:1602–1615.
Eccles, J., Ito, M., and Szentagothai, J. (1967). The Cere-
bellum as a Neuronal Machine. Springer.
Francis, B. and Wonham, W. (1976). The internal model
principle of control theory. Automatica, 12:457–465.
Fujita, M. (1982). Adaptive filter model of the cerebellum.
Biological Cybernetics, 45:195–206.
Galea, J., Vazquez, A., Pasricha, N., de Xivry, J., and Cel-
nik, P. (2011). Dissociating the roles of the cerebellum
and motor cortex during adaptive learning: the motor
cortex retains what the cerebellum learns. Cerebral
Cortex, 21:1761—-1770.
Gawad, A. A. and Broucke, M. E. (2020). Visuomotor adap-
tation is a disturbance rejection problem. In IEEE
Conference on Decision and Control, pages 3895–
3900.
Hafez, M., Uzeda, E., and Broucke, M. (2021). Discrete-
time output regulation and visuomotor adaptation.
Letters of the Control Systems Society. Submitted.
Houck, B. D. and Person, A. L. (2014). Cerebellar loops:
a review of the nucleocortical pathway. Cerebellum,
13:378–385.
Ito, M. (1984). The Cerebellum and Neural Control. Raven
Press.
Kanellakopoulos, M. K. I. and Kokotovic, P. (1995).
Nonlinear and Adaptive Control Design. Wiley-
Interscience.
Kitago, T., Ryan, S., Mazzoni, P., Krakauer, J., and Haith,
A. (2013). Unlearning versus savings in visuomotor
adaptation: comparing effects of washout, passage of
time, and removal of errors on motor memory. Fron-
tiers in Human Neuroscience, 7(307).
Kojima, Y., Iwamoto, Y., and Yoshida, K. (2004). Memory
of learning facilitates saccadic adaptation in the mon-
key. Journal of Neuroscience, 24(34):7531–7539.
Kreisselmeier, G. (1977). Adaptive observers with expo-
nential rate of convergence. IEEE Transactions on
Automatic Control, 22(1):2–8.
Leigh, R. J. and Zee, D. S. (2015). The Neurology of Eye
Movements. Oxford University Press, 5th ed.
Lisberger, S. (2009). Internal models of eye movement in
the floccular complex of the monkey cerebellum. Neu-
roscience, 162(3):763–776.
Martin, T., Keating, J., Goodkin, H., Bastian, A., and
Thach, W. (1996). Throwing while looking through
prisms ii. specificity and storage of multiple gaze-
throw calibrations. Brain, 119:1199 – 1211.
Mazzoni, P. and Krakauer, J. (2006). An implicit plan over-
rides an explicit strategy during visuomotor adapta-
tion. Journal of Neuroscience, 26:3642–3645.
Miki, S., Urase, K., Baker, R., and Hirata, Y. (2020). Ve-
locity storage mechanism drives a cerebellar clock for
predictive eye velocity control. Nature Science Re-
ports, 10(6944).
Morris, E. and Lisberger, S. (1987). Different responses to
small visual errors during initiation and maintenance
of smooth-pursuit eye movements in monkeys. Jour-
nal of Neurophysiology, 58(6):1351–1369.
Narendra, K. and Annaswamy, A. (1989). Stable Adaptive
Systems. Dover Publications.
Nikiforov, V. O. (2004a). Observers of external determin-
istic disturbances i. objects with known parameters.
Automation and Remote Control, 65(10):1531–1541.
Nikiforov, V. O. (2004b). Observers of external determinis-
tic disturbances ii. objects with unknown parameters.
Automation and Remote Control, 65(11):1724–1732.
Ramanchandran, R. and Lisberger, S. (2008). Neural sub-
strate of modified and unmodified pathways for learn-
ing in monkey vestibuloocular reflex. J. Neurophysi-
ology, 100:1868–1878.
Rand, M. and Rentsch, S. (2015). Gaze locations affect ex-
plicit process but not implicit process during visuomo-
tor adaptation. Journal of Neurophysiology, 113:88–
99.
ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics
22