Cliche, M. (2017). Bb twtr at semeval-2017 task 4: Twitter
sentiment analysis with cnns and lstms. arXiv preprint
arXiv:1704.06125.
Conde-Cespedes, P., Chavando, J., and Deberry, E. (2018).
Detection of suspicious accounts on twitter using
word2vec and sentiment analysis. In International
Conference on Multimedia and Network Information
System, pages 362–371. Springer.
Djaballah, K. A., Boukhalfa, K., and Boussaid, O.
(2019). Sentiment analysis of twitter messages us-
ing word2vec by weighted average. In 2019 Sixth In-
ternational Conference on Social Networks Analysis,
Management and Security (SNAMS), pages 223–228.
IEEE.
Elman, J. L. (1990). Finding structure in time. Cognitive
science, 14(2):179–211.
Gers, F. A., Schmidhuber, J., and Cummins, F. (1999).
Learning to forget: Continual prediction with lstm.
Hassan, A. and Mahmood, A. (2018). Convolutional recur-
rent deep learning model for sentence classification.
Ieee Access, 6:13949–13957.
Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.,
et al. (2001). Gradient flow in recurrent nets: the dif-
ficulty of learning long-term dependencies.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Jim
´
enez-Zafra, S. M., Montejo-R
´
aez, A., Mart
´
ın-Valdivia,
M. T., and Lopez, L. A. U. (2017). Sinai at semeval-
2017 task 4: User based classification. In Proceedings
of the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 634–639.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Kolovou, A., Kokkinos, F., Fergadis, A., Papalampidi, P.,
Iosif, E., Malandrakis, N., Palogiannidi, E., Papageor-
giou, H., Narayanan, S., and Potamianos, A. (2017).
Tweester at semeval-2017 task 4: Fusion of semantic-
affective and pairwise classification models for sen-
timent analysis in twitter. In Proceedings of the
11th International Workshop on Semantic Evaluation
(SemEval-2017), pages 675–682.
M
¨
uller, S., Huonder, T., Deriu, J. M., and Cieliebak, M.
(2017). Topicthunder at semeval-2017 task 4: Senti-
ment classification using a convolutional neural net-
work with distant supervision. In Proceedings of the
11th International Workshop on Semantic Evaluation
(SemEval-2017), pages 766–770.
Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., and Stoy-
anov, V. (2019). Semeval-2016 task 4: Sentiment
analysis in twitter. arXiv preprint arXiv:1912.01973.
Nguyen, L. T., Wu, P., Chan, W., Peng, W., and Zhang,
Y. (2012). Predicting collective sentiment dynamics
from time-series social media. In Proceedings of the
First International Workshop on Issues of Sentiment
Discovery and Opinion Mining, WISDOM ’12, New
York, NY, USA. Association for Computing Machin-
ery.
Nguyen, T. H., Shirai, K., and Velcin, J. (2015). Sentiment
analysis on social media for stock movement predic-
tion. Expert Systems with Applications, 42(24):9603
– 9611.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543.
Rosenthal, S., Farra, N., and Nakov, P. (2019a). Semeval-
2017 task 4: Sentiment analysis in twitter. arXiv
preprint arXiv:1912.00741.
Rosenthal, S., Mohammad, S. M., Nakov, P., Ritter, A., Kir-
itchenko, S., and Stoyanov, V. (2019b). Semeval-2015
task 10: Sentiment analysis in twitter. arXiv preprint
arXiv:1912.02387.
Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., and Deng,
X. (2013). Exploiting topic based twitter sentiment
for stock prediction. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 24–29.
Tumasjan, A., Sprenger, T. O., Sandner, P. G., and Welpe,
I. M. (2010). Predicting elections with twitter: What
140 characters reveal about political sentiment. In
Fourth international AAAI conference on weblogs and
social media.
Wilson, T. D. and Gilbert, D. T. (2003). Affective forecast-
ing.
Yoo, S., Song, J., and Jeong, O. (2018). Social media con-
tents based sentiment analysis and prediction system.
Expert Systems with Applications, 105:102 – 111.
Zhang, R., Lee, H., and Radev, D. R. (2016). Dependency
sensitive convolutional neural networks for modeling
sentences and documents. CoRR, abs/1611.02361.
Zhou, C., Wang, J., and Zhang, X. (2019). Ynu-hpcc at
semeval-2019 task 6: Identifying and categorising of-
fensive language on twitter. In Proceedings of the
13th International Workshop on Semantic Evaluation,
pages 812–817.
Prediction Sentiment Polarity using Past Textual Content and CNN-LSTM Neural Networks
249