Analysis and Recognition (Volume 1) - Volume 1, IC-
DAR ’95, USA. IEEE Computer Society.
Lingitz, L., Gallina, V., Ansari, F., Gyulai, D., Pfeiffer, A.,
Sihn, W., and Monostori, L. (2018). Lead time predic-
tion using machine learning algorithms: A case study
by a semiconductor manufacturer. Procedia CIRP.
51st CIRP Conference on Manufacturing Systems.
Lundberg, S. and Lee, S.-I. (2017). A unified approach to
interpreting model predictions. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems. Curran As-
sociates, Inc.
Mitchell, T. (1997). Machine Learning. McGraw Hill Inc.,
USA, 1st edition.
Onaran, E. and Yanik, S. (2019). Predicting Cycle Times
in Textile Manufacturing Using Artificial Neural Net-
work.
Opitz, D. and Maclin, R. (1999). Popular ensemble meth-
ods: An empirical study. Journal of Artificial Intelli-
gence Research.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., K¨opf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
(2019). In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alch´e-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E., and Louppe, G. (2012). Scikit-learn: Machine
learning in python. Journal of Machine Learning Re-
search, 12.
Pfeiffer, A., Gyulai, D., K´ad´ar, B., and Monostori, L.
(2016). Manufacturing lead time estimation with
the combination of simulation and statistical learning
methods. Procedia CIRP.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. (2018). Catboost: Unbiased
boosting with categorical features. In Proceedings of
the 32nd International Conference on Neural Infor-
mation Processing Systems. Curran Associates Inc.
Russell, S. and Norvig, P. (2009). Artificial Intelligence:
A Modern Approach. Prentice Hall Press, USA, 3rd
edition.
Si, S., Zhang, H., Keerthi, S. S., Mahajan, D., Dhillon, I. S.,
and Hsieh, C.-J. (2017). Gradient boosted decision
trees for high dimensional sparse output. In Precup,
D. and Teh, Y. W., editors, Proceedings of the 34th
International Conference on Machine Learning, Pro-
ceedings of Machine Learning Research. PMLR.
Tianfeng, C. and Draxler, R. (2014). Root mean square er-
ror (rmse) or mean absolute error (mae)? – arguments
against avoiding rmse in the literature. In Geoscien-
tific Model Development.
Wang, H., Raj, B., and Xing, E. P. (2017). On the origin of
deep learning. CoRR, abs/1702.07800.