REFERENCES
Brownlee, J. (2017). Machine learning mastery.how to get
reproducible results with keras. Last accessed 17 June
2019.
Burtscher, M., Faulhaber, M., Flatz, M., Likar, R., and
Nachbauer, W. (2006). Effects of short-term acclima-
tization to altitude (3200 m) on aerobic and anaerobic
exercise performance. International journal of sports
medicine, 27:629–35.
Castronovo, M., Conforto, S., Schmid, M., Bibbo, D., and
D’Alessio, T. (2013). How to assess performance in
cycling: the multivariate nature of influencing factors
and related indicators. Frontiers in physiology, 4:116.
Cecchini, G., Maria Lozito, G., Schmid, M., Conforto, S.,
Riganti Fulginei, F., and Bibbo, D. (2014). Neural
networks for muscle forces prediction in cycling. Al-
gorithms, 7:621–634.
Chen, T. and Guestrin, C. (2016). XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pages
785–794, New York, NY, USA. ACM.
Cintia, P., Pappalardo, L., and Pedreschi, D. (2013). “En-
gine Matters”: A first large scale data driven study
on cyclists’ performance. In 2013 IEEE 13th Interna-
tional Conference on Data Mining Workshops, pages
147–153.
Eckhardt, K. (2018). Towards machine learning.choosing
the right hyperparameters for a simple lstm using
keras. Last accessed 19 June 2019.
Efroymson, M. (1960). Multiple regression analysis. Math-
ematical Methods for Digital Computers.
Fulco, C., Rock, P., and Cymerman, A. (2000). Improving
athletic performance: Is altitude residence or altitude
training helpful? Aviation, space, and environmental
medicine, 71:162–71.
Garvican-Lewis, L., Clark, B., Martin, D., Olaf Schu-
macher, Y., McDonald, W., Stephens, B., Ma, F.,
Thompson, K., J Gore, C., and Menaspà, P. (2015).
Impact of altitude on power output during cycling
stage racing. PloS one, 10:e0143028.
Gepsoft (2019). Choosing the fitness function. Last ac-
cessed 20 June 2019.
Gepsoft (2019). Mean absolute error. Last accessed 1 July
2019.
Hamlin, M. (2013). Live low-train high in elite athletes: A
case study of a responder and non-responder. Journal
of Athletic Enhancement, 4.
Hassani, M. (2015). Efficient clustering of big data streams.
PhD thesis, RWTH Aachen University, Germany.
Hassani, M. and Seidl, T. (2011). Towards a mobile health
context prediction: Sequential pattern mining in mul-
tiple streams. In 12th IEEE International Conference
on Mobile Data Management, MDM Volume 2, pages
55–57.
Hassani, M., Töws, D., Cuzzocrea, A., and Seidl, T. (2019).
BFSPMiner: an effective and efficient batch-free algo-
rithm for mining sequential patterns over data streams.
Int. J. Data Sci. Anal., 8(3):223–239.
Hilmkil, A., Ivarsson, O., Johansson, M., Kuylenstierna, D.,
and Erp, T. (2018). Towards machine learning on data
from professional cyclists. Proceedings of the World
Congress of Performance Analysis of Sport XII.
IBM (2019). Ibm knowledge center. Last accessed 20 June
2019.
Jobson, S., Passfield, L., Atkinson, G., Barton, G., and
Scarf, P. (2009). The analysis and utilization of cy-
cling training data. Sports medicine (Auckland, N.Z.),
39:833–44.
Jr., I. F., Rauter, S., Fister, D., and Fister, I. (2017). A col-
lection of sport activity datasets with an emphasis on
powermeter data. Technical report, 2017.
Karetnikov, A. (2021). Cycling framework openlapp. https:
//github.com/alexey-ka/OpenLapp. Last accessed 14
May 2021.
Kataoka, Y. and Gray, P. (2019). Real-time power perfor-
mance prediction in tour de france. Machine Learning
and Data Mining for Sports Analytics. MLSA 2018.
Lecture Notes in Computer Science, 11330:121–130.
Kenneth, B. (2011). Linear regression models with loga-
rithmic transformations. Last accessed 4 July 2019.
Leung, C. and W. Joseph, K. (2014). Sports data mining:
Predicting results for the college football games. Pro-
cedia Computer Science, 35.
Lu, Y., Hassani, M., and Seidl, T. (2017). Incremen-
tal temporal pattern mining using efficient batch-free
stream clustering. In Proceedings of the 29th In-
ternational Conference on Scientific and Statistical
Database Management, Chicago, IL, USA, June 27-
29, 2017, pages 7:1–7:12.
Maszczyk, A., Roczniok, R., Wa
´
skiewicz, Z., Czuba, M.,
Mikolajec, K., Zajac, A., and Stanula, A. (2012). Ap-
plication of regression and neural models to predict
competitive swimming performance. Perceptual and
motor skills, 114:610–26.
Pallapothu, H. S. R. (2019). What’s so special about cat-
boost? Last accessed 4 July 2019.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Przednowek, K., Iskra, J., and Przednowek, K. H. (2014).
Predictive modeling in 400-metres hurdles races. ic-
SPORTS 2014 - Proceedings of the 2nd International
Congress on Sports Sciences Research and Technol-
ogy Support.
Przednowek, K. and Wiktorowicz, K. (2013). Prediction of
the result in race walking using regularized regression
models. Journal of Theoretical and Applied Computer
Science, 7:45–58.
Rastegari, H. (2013). A review of data mining techniques
for result prediction in sports. Advances in Computer
Science, 2.
Xert (2019). Xert – discover. improve. perform. – smart
power-based training software. Last accessed 15 June
2019.
Yandex (2019). Overview of CatBoost. Last accessed 31
June 2019.
Data-driven Support of Coaches in Professional Cycling using Race Performance Prediction
53