Anderson, C. W., & Sijercic, Z. (1996). Classification of
EEG signals from four subjects during five mental
tasks. Advances, 407–414. http://sce.uhcl.edu/
boetticher/CSCI5931 Computer Human
Interaction/Classification of EEG signals from four
subjects during five mental tasks.pdf
Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., & Pascual-
Leone, J. (2018). Brain areas associated with numbers
and calculations in children: Meta-analyses of fMRI
studies. Developmental Cognitive Neuroscience,
30(August 2017), 239–250. https://doi.org/10.1016/
j.dcn.2017.08.002
Attallah, O., Abougharbia, J., Tamazin, M., & Nasser, A.
A. (2020). A BCI system based on motor imagery for
assisting people with motor deficiencies in the limbs.
Brain Sciences, 10(11), 1–25. https://doi.org/
10.3390/brainsci10110864
Başar, E., Özgören, M., Öniz, A., Schmiedt, C., & Başar-
Eroǧlu, C. (2007). Brain oscillations differentiate the
picture of one’s own grandmother. International
Journal of Psychophysiology, 64(1), 81–90.
https://doi.org/10.1016/j.ijpsycho.2006.07.002
Birbaumer, N., & Cohen, L. G. (2007). Brain-computer
interfaces: Communication and restoration of
movement in paralysis. Journal of Physiology, 579(3),
621–636. https://doi.org/10.1113/jphysiol.2006.125633
Cabrera, A. F., & Dremstrup, K. (2008). Auditory and
spatial navigation imagery in Brain-Computer Interface
using optimized wavelets. Journal of Neuroscience
Methods, 174(1), 135–146. https://doi.org/10.10
16/j.jneumeth.2008.06.026
Cipresso, P., Carelli, L., Solca, F., Meazzi, D., Meriggi, P.,
Poletti, B., Lulé, D., Ludolph, A. C., Silani, V., & Riva,
G. (2012). The use of P300-based BCIs in amyotrophic
lateral sclerosis: From augmentative and alternative
communication to cognitive assessment. Brain and
Behavior, 2(4), 479–498. https://doi.org/10.1002/
brb3.57
Cona, G., & Scarpazza, C. (2019). Where is the “where” in
the brain? A meta-analysis of neuroimaging studies on
spatial cognition. Human Brain Mapping, 40(6), 1867–
1886. https://doi.org/10.1002/hbm.24496
Curran, E. A., & Stokes, M. J. (2003). Learning to control
brain activity: A review of the production and control
of EEG components for driving brain-computer
interface (BCI) systems. Brain and Cognition, 51(3),
326–336. https://doi.org/10.1016/S0278-2626(03)000
36-8
Curran, E. A., Sykacek, P., Stokes, M. J., Roberts, S. J.,
Penny, W., Johnsrude, I., & Owen, A. M. (2004).
Cognitive Tasks for Driving a Brain-Computer
Interfacing System: A Pilot Study. IEEE Transactions
on Neural Systems and Rehabilitation Engineering,
12(1), 48–54. https://doi.org/10.1109/TNSRE.2003.82
1372
De Massari, D., Ruf, C. A., Furdea, A., Matuz, T., Van Der
Heiden, L., Halder, S., Silvoni, S., & Birbaumer, N.
(2013). Brain communication in the locked-in state.
Brain, 136(6), 1989–2000. https://doi.org/10.1093/
brain/awt102
Friedrich, E. V. C., Scherer, R., & Neuper, C. (2012). The
effect of distinct mental strategies on classification
performance for brain-computer interfaces.
International Journal of Psychophysiology, 84(1), 86–
94. https://doi.org/10.1016/j.ijpsycho.2012.01.014
Friedrich, E. V. C., Scherer, R., & Neuper, C. (2013). Long-
term evaluation of a 4-class imagery-based brain-
computer interface. Clinical Neurophysiology, 124(5),
916–927. https://doi.org/10.1016/j.clinph.2012.11.010
Gonzalez, M., & Yu, L. (2016). Auditory imagery
classification with a non-invasive BCI. 2016 IEEE 36th
Central American and Panama Convention,
CONCAPAN 2016. https://doi.org/10.1109/CONCA
PAN.2016.7942369
Guger, C., Spataro, R., Allison, B. Z., Heilinger, A., Ortner,
R., Cho, W., & La Bella, V. (2017). Complete locked-
in and locked-in patients: Command following
assessment and communication with vibro-tactile P300
and motor imagery brain-computer interface tools.
Frontiers in Neuroscience, 11(MAY), 1–11.
https://doi.org/10.3389/fnins.2017.00251
Halder, S., Käthner, I., & Kübler, A. (2016). Training leads
to increased auditory brain-computer interface
performance of end-users with motor impairments.
Clinical Neurophysiology, 127(2), 1288–1296.
https://doi.org/10.1016/j.clinph.2015.08.007
Halpern, A. R. (2003). Cerebral Substrates of Musical
Imagery. In I. Peretz & R. Zatorre (Eds.), The cognitive
neuroscience of music (Vol. 930, pp. 2017–2230). New
York, NY: Oxford University Press. https://doi.org/
10.1093/acprof:oso/9780198525202.003.0015
Han, C. H., Kim, Y. W., Kim, D. Y., Kim, S. H., Nenadic,
Z., & Im, C. H. (2019). Electroencephalography-based
endogenous brain-computer interface for online
communication with a completely locked-in patient.
Journal of NeuroEngineering and Rehabilitation,
16(1), 1–13. https://doi.org/10.1186/s12984-019-0493-0
Huan, N., & Palaniappan, R. (2000). Brain Computer
Interface Design Using Mental Task Classification. 1–9.
Jäncke, L., & Jordan, K. (2007). Functional Neuroanatomy
of mental rotation performance. In Spatial processing
in navigation, imagery and perception (pp. 183–207).
Boston, MA: Springer.
Kleih, S. C., & Kubler, A. (2016). Psychological Factors
Influencing Brain-Computer Interface (BCI)
Performance. Proceedings - 2015 IEEE International
Conference on Systems, Man, and Cybernetics, SMC
2015, 3192–3196. https://doi.org/10.1109/SMC.20
15.554
Kleih, S. C., Nijboer, F., Halder, S., & Kübler, A. (2010).
Motivation modulates the P300 amplitude during brain-
computer interface use. Clinical Neurophysiology,
121(7), 1023–1031. https://doi.org/10.1016/j.clinph.20
10.01.034
Kraemer, D. J. M., Macrae, C. N., Green, A. E., & Kelley,
W. M. (2005). Sound of silence activates auditory
cortex. Nature, 434(7030), 158. https://doi.org/10.10
38/434158a
Kübler, A., & Birbaumer, N. (2008). Brain-computer
interfaces and communication in paralysis: Extinction