Luke, S., Cioffi-Revilla, C., Panait, L., and Sullivan, K.
(2004). Mason: A new multi-agent simulation toolkit.
In Proceedings of the 2004 swarmfest workshop, vol-
ume 8, pages 316–327. Michigan, USA.
Montesi, F. and Weber, J. (2016). Circuit breakers, discov-
ery, and api gateways in microservices. arXiv preprint
arXiv:1609.05830.
Mustafee, N., Brailsford, S., Djanatliev, A., Eldabi, T.,
Kunc, M., and Tolk, A. (2017). Purpose and benefits
of hybrid simulation: contributing to the convergence
of its definition. In 2017 Winter Simulation Confer-
ence (WSC), pages 1631–1645. IEEE.
Muto, T. J., Bolivar, E. B., and Gonz
´
alez, E. (2020). Bdi
multi-agent based simulation model for social ecolog-
ical systems. In International Conference on Practi-
cal Applications of Agents and Multi-Agent Systems,
pages 279–288. Springer.
Noura, M. and Gaedke, M. (2019). Wotdl: web of things de-
scription language for automatic composition. In 2019
IEEE/WIC/ACM International Conference on Web In-
telligence (WI), pages 413–417. IEEE.
O’Neill, E., Lillis, D., O’Hare, G. M., and Collier, R. W.
(2020). Explicit modelling of resources for multi-
agent microservices using the cartago framework. In
Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems.
Papasimeon, M. (2010). Modelling agent-environment in-
teraction in multi-agent simulations with affordances.
Phd, Defence Science and Technology Organisation,
Air Operations Division.
Polhill, J. G., Ge, J., Hare, M. P., Matthews, K. B., Gi-
mona, A., Salt, D., and Yeluripati, J. (2019). Crossing
the chasm: a ‘tube-map’for agent-based social simu-
lation of policy scenarios in spatially-distributed sys-
tems. GeoInformatica, 23(2):169–199.
Pump, R., Koschel, A., and Ahlers, V. (2019). Applying
microservices principles to simulation tools. In Ser-
vice Computation, 11th International Conference on
Advanced Service Computing.
Rao, A. S., Georgeff, M. P., et al. (1995). Bdi agents: from
theory to practice. In Icmas, volume 95.
Rashid, Z. N., Zebari, S. R., Sharif, K. H., and Jacksi, K.
(2018). Distributed cloud computing and distributed
parallel computing: A review. In 2018 International
Conference on Advanced Science and Engineering
(ICOASE), pages 167–172. IEEE.
Ricci, A., Croatti, A., Bordini, R., H
¨
ubner, J., and Boissier,
O. (2020). Exploiting simulation for mas program-
ming and engineering-the jacamo-sim platform. In 8th
International Workshop on Engineering Multi-Agent
Systems (EMAS 2020).
Ricci, A., Viroli, M., and Omicini, A. (2007). CArtAgO:
A Framework for Prototyping Artifact-Based Envi-
ronments in MAS. In Weyns, D., Parunak, H., and
Michel, F., editors, Environments for Multi-Agent Sys-
tems III, volume 4389 of Lecture Notes in Computer
Science, pages 67–86. Springer Berlin Heidelberg.
Richards, M. (2015). Microservices vs. service-oriented ar-
chitecture. O’Reilly Media.
Savaglio, C., Ganzha, M., Paprzycki, M., B
˘
adic
˘
a, C.,
Ivanovi
´
c, M., and Fortino, G. (2020). Agent-
based internet of things: State-of-the-art and research
challenges. Future Generation Computer Systems,
102:1038–1053.
Shoham, Y. (1993). Agent-oriented programming. Artificial
intelligence, 60(1):51–92.
Taillandier, P., Bourgais, M., Caillou, P., Adam, C., and
Gaudou, B. (2016). A bdi agent architecture for the
gama modeling and simulation platform. In Interna-
tional Workshop on Multi-Agent Systems and Agent-
Based Simulation, pages 3–23. Springer.
Taylor, S., Anagnostou, A., Abubakar, N., Kiss, T., Deslau-
riers, J., Terstyanszky, G., Kacsuk, P., Kovacs, J., Kite,
S., Pattison, G., et al. (2020). Innovations in simula-
tion: Experiences with cloud-based simulation exper-
imentation. In Winter Simulation Conference 2020.
Taylor, S. J. (2019). Distributed simulation: state-of-the-
art and potential for operational research. European
Journal of Operational Research, 273(1):1–19.
Taylor, S. J., Kiss, T., Anagnostou, A., Terstyanszky, G.,
Kacsuk, P., Costes, J., and Fantini, N. (2018). The
CloudSME simulation platform and its applications:
A generic multi-cloud platform for developing and ex-
ecuting commercial cloud-based simulations. Future
Generation Computer Systems, 88:524–539.
Teixeira, B., Santos, G., Pinto, T., Vale, Z., and Corchado,
J. M. (2020). Application ontology for multi-agent
and web-services’ co-simulation in power and energy
systems. IEEE Access, 8:81129–81141.
Th
¨
ones, J. (2015). Microservices. IEEE software,
32(1):116–116.
Turner II, B., Esler, K. J., Bridgewater, P., Tewksbury, J.,
Sitas, N., Abrahams, B., Chapin III, F. S., Chowd-
hury, R. R., Christie, P., Diaz, S., et al. (2016). Socio-
environmental systems (ses) research: what have we
learned and how can we use this information in future
research programs. Current opinion in environmental
sustainability, 19:160–168.
Vachtsevanou, D., Junker, P., Ciortea, A., Mizutani, I., and
Mayer, S. (2020). Long-lived agents on the web: Con-
tinuous acquisition of behaviors in hypermedia envi-
ronments. In Companion Proceedings of the Web Con-
ference 2020, pages 185–189.
W Axhausen, K., Horni, A., and Nagel, K. (2016). The
multi-agent transport simulation MATSim. Ubiquity
Press.
Weyns, D., Omicini, A., and Odell, J. (2007). Environment
as a first class abstraction in multiagent systems. Au-
tonomous Agents and Multi-Agent Systems, 14(1).
Zhou, Y., De, S., Wang, W., and Moessner, K. (2016).
Search techniques for the web of things: A taxonomy
and survey. Sensors, 16(5):600.
Zimmermann, O. (2017). Microservices tenets. Computer
Science-Research and Development, 32(3-4).
Harnessing Hypermedia MAS and Microservices to Deliver Web Scale Agent-based Simulations
411