optimization tool for colored Petri net-based
scheduling. Computers and Industrial Engineering,
101, 372–390.
https://doi.org/10.1016/j.cie.2016.07.031
Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-Dynamic
Programming.
Brucker, P., & Schlie, R. (1990). Job-shop scheduling with
multi-purpose machines. Computing, 45(4), 369–375.
https://doi.org/10.1007/BF02238804
Bull, L. (2015). A brief history of learning classifier
systems: from CS-1 to XCS and its variants.
Evolutionary Intelligence, 8(2–3), 55–70.
https://doi.org/10.1007/s12065-015-0125-y
Butz, M. V. (2015). Learning classifier systems. Springer
Handbook of Computational Intelligence, (June), 961–
981. https://doi.org/10.1007/978-3-662-43505-2_47
Cao, T., & Sanderson, A. C. (1994). Task Decomposition
and Analysis of Robotic Assembly Task Plans Using
Petri Nets. IEEE Transactions on Industrial
Electronics, 41(6), 620–630.
https://doi.org/10.1109/41.334579
Chan, F. T. S., Bhagwat, R., & Chan, H. K. (2014). The
effect of responsiveness of the control-decision system
to the performance of FMS. Computers and Industrial
Engineering, 72(1), 32–42.
https://doi.org/10.1016/j.cie.2014.03.003
Charpentier, P., & Thomas, A. (2005). Reducing simulation
models for scheduling manufacturing facilities. 161,
111–125. https://doi.org/10.1016/j.ejor.2003.08.042
Chen, F. ., & Shukla, C. S. (1996). The state of the art in
intelligent real-time FMS control : a comprehensive
survey. Journal of Intelligent Manufacturing, 7, 441–
455.
Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., & Tao, F.
(2018). Cyber-physical integration for moving digital
factories forward towards smart manufacturing: a
survey. International Journal of Advanced
Manufacturing Technology, 97(1–4), 1209–1221.
https://doi.org/10.1007/s00170-018-2001-2
Cowling, P., & Johansson, M. (2002). Using real time
information for effective dynamic scheduling. 139,
230–244.
Dietterich, T. G., & Zhang, W. (1995). A Reinforcement
Learning Approach to Job-shop Scheduling. Ijcai,
1114–1120. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.8.3850&rep=rep1&type=pdf
Dvorak, F., Bartak, R., Bit-Monnot, A., Ingrand, F., &
Ghallab, M. (2014). Planning and Acting with
Temporal and Hierarchical Decomposition Models.
Proceedings - International Conference on Tools with
Artificial Intelligence, ICTAI, 2014-
Decem, 115–121.
https://doi.org/10.1109/ICTAI.2014.27
Feldt, J., Kourouklis, T., Kontny, H., & Wagenitz, A.
(2020). Digital twin: Revealing potentials of real-time
autonomous decisions at a manufacturing company.
Procedia CIRP, 88, 185–190.
https://doi.org/10.1016/j.procir.2020.05.033
Ferber, J. (1999). Multi-Agent System: An Introduction to
Distributed Artificial Intelligence.
Fujimoto, R. M. (2016). Research challenges in parallel and
distributed simulation. ACM Transactions on Modeling
and Computer Simulation, 26(4), 1–29.
https://doi.org/10.1145/2866577
Ghasemi, A., Azzouz, R., Laipple, G., Kabak, K. E., &
Heavey, C. (2020). Optimizing capacity allocation in
semiconductor manufacturing photolithography area –
Case study: Robert Bosch. Journal of Manufacturing
Systems, 54(November 2019), 123–137.
https://doi.org/10.1016/j.jmsy.2019.11.012
Helliwell, T. J., Morgan, B., & Mahfouf, M. (2021).
Searching & Generating Discrete-Event Systems.
Proceedings of the 18th International Conference on
Informatics in Control, Automation and Robotics,
ICINCO 2021, 203–210.
https://doi.org/10.5220/0010584302030210
Howard, R. A. (1960). Dynamic Programming and Markov
Processes.
Hu, H., Jia, X., He, Q., Fu, S., & Liu, K. (2020). Deep
reinforcement learning based AGVs real-time
scheduling with mixed rule for flexible shop floor in
industry 4.0. Computers and Industrial Engineering,
149(January), 106749.
https://doi.org/10.1016/j.cie.2020.106749
Hu, L., Liu, Z., Hu, W., Wang, Y., Tan, J., & Wu, F. (2020).
Petri-net-based dynamic scheduling of flexible
manufacturing system via deep reinforcement learning
with graph convolutional network. Journal of
Manufacturing Systems, 55(December 2019), 1–14.
https://doi.org/10.1016/j.jmsy.2020.02.004
Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical
Systems architecture for Industry 4.0-based
manufacturing systems. Manufacturing Letters, 3, 18–
23. https://doi.org/10.1016/j.mfglet.2014.12.001
Li, X., Wang, L., Zhu, C., & Liu, Z. (2020). Framework for
manufacturing-tasks semantic modelling and
manufacturing-resource recommendation for digital
twin shop-floor. Journal of Manufacturing Systems,
(August), 0–1.
https://doi.org/10.1016/j.jmsy.2020.08.003
Luo, H., Fang, J., & Huang, G. Q. (2015). Real-time
scheduling for hybrid flowshop in ubiquitous
manufacturing environment. Computers and Industrial
Engineering, 84, 12–23.
https://doi.org/10.1016/j.cie.2014.09.019
Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in
scheduling research: a review of optimization and
heuristic methods in production scheduling.
International Journal of Production Research, 31(2),
299–309. https://doi.org/10.1080/00207549308956726
Mejía, G., & Pereira, J. (2020). Multiobjective scheduling
algorithm for flexible manufacturing systems with Petri
nets. Journal of Manufacturing Systems, 54(January),
272–284. https://doi.org/10.1016/j.jmsy.2020.01.003
Moore, K. L., & Flann, N. S. (1999). Hierarchical task
decomposition approach to path planning and control
for an omni-directional autonomous mobile robot.
IEEE International Symposium on Intelligent Control -
Proceedings, 302–307.
https://doi.org/10.1109/isic.1999.796672