Automation Magazine, 13(4), 82–90. https://doi.org/
10.1109/MRA.2006.250573.
Dalyaev, I., Titov, V., & Shardyko, I. (2018). A concept of
robotic system with force-controlled manipulators for
on-orbit servicing spacecraft. En Proceedings of the
Scientific-Practical Conference «Research and
Development - 2016» (pp. 239-245). Springer
International Publishing.
Felicetti, L., Gasbarri, P., Pisculli, A., Sabatini, M., &
Palmerini, G. B. (2016). Design of robotic manipulators
for orbit removal of spent launchers' stages. Acta
Astronautica, 119, 118–130. https://doi.org/10.1016/
j.actaastro.2015.11.012.
Flores-Abad, A., Ma, O., Pham, K., & Ulrich, S. (2014). A
review of space robotics technologies for on-orbit
servicing. Progress in Aerospace Sciences, 68, 1–26.
https://doi.org/10.1016/j.paerosci.2014.03.002.
Garcia, J., Gonzalez, D., Rodriguez, A., Santamaria, B.,
Estremera, J., & Armendia, M. (2019). Application of
Impedance Control in Robotic Manipulators for
Spacecraft On-orbit Servicing. 2019 24th IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA), 836–842.
https://doi.org/10.1109/ETFA.2019.8869069.
Garcia, J., Rodriguez, A., Estremera, J., Santamaria, B.,
Gonzalez, D., & Armendia, M. (2020). Visual Servoing
and Impedance Control in Robotic Manipulators for
On-Orbit Servicing. 2020 25th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), 1, 734–741. https://doi.org/
10.1109/ETFA46521.2020.9211989.
Ma, G., Jiang, Z., Li, H., Gao, J., Yu, Z., Chen, X., Liu, Y.-
H., & Huang, Q. (2015). Hand-eye servo and
impedance control for manipulator arm to capture target
satellite safely. Robotica, 33(4), 848–864.
https://doi.org/10.1017/S0263574714000587.
Mitros, Z., Rekleitis, G., & Papadopoulos, E. (2017).
Impedance control design for on-orbit docking using an
analytical and experimental approach".
Moghaddam, B. M., & Chhabra, R. (2021). On the
guidance, navigation and control of in-orbit space
robotic missions: A survey and prospective vision. Acta
Astronautica, 184, 70–100. https://doi.org/10.1016/
j.actaastro.2021.03.029.
Nocerino, A., Opromolla, R., Fasano, G., & Grassi, M.
(2021). LIDAR-based multi-step approach for relative
state and inertia parameters determination of an
uncooperative target. Acta Astronautica, 181, 662–678.
https://doi.org/10.1016/j.actaastro.2021.02.019.
Palmerini, G. B. (2016). Relative navigation in autonomous
spacecraft formations. 2016 IEEE Aerospace
Conference, 1–10. https://doi.org/10.1109/AERO.20
16.7500944.
Peng, J., Xu, W., Liu, T., Yuan, H., & Liang, B. (2021).
End-effector pose and arm-shape synchronous planning
methods of a hyper-redundant manipulator for
spacecraft repairing. Mechanism and Machine Theory,
155, 104062–. https://doi.org/10.1016/j.mechmach
theory.2020.104062.
Pisculli, A., Felicetti, L., Gasbarri, P., Palmerini, G. ., &
Sabatini, M. (2014). A reaction-null/Jacobian transpose
control strategy with gravity gradient compensation for
on-orbit space manipulators. Aerospace Science and
Technology, 38, 30–40. https://doi.org/10.1016/j.ast.20
14.07.012.
Pomares, J., Felicetti, L., Pérez, J., & Emami, M. R. (2018).
Concurrent image-based visual servoing with adaptive
zooming for non-cooperative rendezvous maneuvers.
Advances in Space Research, 61(3), 862–878.
https://doi.org/10.1016/j.asr.2017.10.054.
Pomares, J., Jara, C. A., Pérez, J., & Torres, F. (2015).
Direct visual servoing framework based on optimal
control for redundant joint structures. International
Journal of Precision Engineering and Manufacturing,
16(2), 267–274. https://doi.org/10.1007/s12541-015-
0035-z.
Tommasino D., Cipriani G., Doria A., Rosati G. (2020)
Effect of End-Effector Compliance on Collisions in
Robotic Teleoperation. Applied Sciences. 10(24), 9077.
https://doi.org/10.3390/app10249077.
Wang, H., Guo, D., Xu, H., Chen, W., Liu, T., & Leang, K.
K. (2017). Eye-in-hand tracking control of a free-
floating space manipulator. IEEE transactions on
aerospace and electronic systems, 53(4), 1855-1865.
Xu, R., Luo, J., & Wang, M. (2020). Kinematic and
dynamic manipulability analysis for free-floating space
robots with closed chain constraints. Robotics and
Autonomous Systems, 130, 103548–. https://doi.org/
10.1016/j.robot.2020.103548.