Chen, Y. and Medioni, G. (1992). Object modelling by reg-
istration of multiple range images. Image and vision
computing, 10(3):145–155.
Demantk
´
e, J., Mallet, C., David, N., and Vallet, B. (2011).
Dimensionality based scale selection in 3d lidar point
clouds. In Laserscanning.
Donoso, F., Austin, K. J., and McAree, P. R. (2017).
Three new iterative closest point variant-methods that
improve scan matching for surface mining terrain.
Robotics and Autonomous Systems, 95:117–128.
Forte, M. D. N., Neto, P. S., The, G. A. P., and Nogueira,
F. G. (2021). Altitude Correction of an UAV As-
sisted by Point Cloud Registration of LiDAR Scans.
In Informatics in Control, Automation and Robotics:
18th International Conference, ICINCO 2021 Online
streaming, July 6-8, 2021, volume 1.
Hackel, T., Wegner, J. D., and Schindler, K. (2016). Fast se-
mantic segmentation of 3d point clouds with strongly
varying density. ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences, 3(3).
Kurobe, A., Sekikawa, Y., Ishikawa, K., and Saito, H.
(2020). Corsnet: 3d point cloud registration by deep
neural network. IEEE Robotics and Automation Let-
ters, 5(3):3960–3966.
Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D.,
Kammel, S., Kolter, J. Z., Langer, D., Pink, O., Pratt,
V., et al. (2011). Towards fully autonomous driving:
Systems and algorithms. In 2011 IEEE intelligent ve-
hicles symposium (IV), pages 163–168. IEEE.
Levoy, M., Gerth, J., Curless, B., and Pull, K. (2005). The
stanford 3d scanning repository.
Liu, L., Shi, T., Liu, B., and Yao, H. (2020). Compari-
son of initial registration algorithms suitable for icp
algorithm. In 2020 International Conference on Com-
puter Network, Electronic and Automation (ICCNEA),
pages 106–110. IEEE.
Magnusson, M., Lilienthal, A., and Duckett, T. (2007).
Scan registration for autonomous mining vehicles us-
ing 3d-ndt. Journal of Field Robotics, 24(10):803–
827.
Oliveira, F. P. and Tavares, J. M. R. (2014). Medical image
registration: a review. Computer methods in biome-
chanics and biomedical engineering, 17(2):73–93.
Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud
library (pcl). In Robotics and automation (ICRA),
2011 IEEE International Conference on, pages 1–4.
IEEE.
Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-
icp. In Robotics: science and systems, volume 2, page
435.
Siqueira, R. S., Alexandre, G. R., Soares, J. M., and The, G.
A. P. (2018). Triaxial Slicing for 3-D Face Recogni-
tion From Adapted Rotational Invariants Spatial Mo-
ments and Minimal Keypoints Dependence. IEEE
Robotics and Automation Letters, 3(4):3513–3520.
Souza Neto, P., Pereira, N. S., and Th
´
e, G. A. P. (2018).
Improved Cloud Partitioning Sampling for Iterative
Closest Point: Qualitative and Quantitative Compar-
ison Study. In 15th International Conference on In-
formatics in Control, Automation and Robotics.
Vitter, J. S. (1984). Faster methods for random sampling.
Communications of the ACM, 27(7):703–718.
Wulf, O. (2016). Robotic 3d scan repository.
Yang, J., Li, H., Campbell, D., and Jia, Y. (2016). Go-
ICP: A Globally Optimal Solution to 3D ICP Point-
Set Registration. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.
Zhang, Z. (1994). Iterative point matching for registration
of free-form curves and surfaces. International jour-
nal of computer vision, 13(2):119–152.
Dual-context Identification based on Geometric Descriptors for 3D Registration Algorithm Selection
157