so having a dataset that is collected from real-life
mental health journals would improve the accuracy
of the tool. Due to the shortage of time and
resources, we decided to initiate the study with only
two common cognitive distortions. Which makes
this study the starting point to an all-inclusive tool
for the detection and classification of cognitive
distortions. Areas of future investigation definitely
include the collection and annotation of a larger
dataset, which would improve the accuracy of the
classification.
REFERENCES
Asai, A., Evensen, S., Golshan, B., Halevy, A., Li, V.,
Lopatenko, A., Stepanov, D., Suhara, Y., Tan, W.-c., and
Xu, Y. (2018). Happydb: A corpus of 100,000
crowdsourced happy moments.
Asghar, D. M., Subhan, F., Imran, M., Kundi, F., Khan,
A., Mosavi, A., Csiba, P., and Varkonyi-Koczy, A.
(2020). Performance evaluation of supervised machine
learning techniques for efficient detection of emotions
from online content. Computers, Materials and
Continua, 63.
Balabantaray, R. C., Bhubaneswar, I., Mohammad, M.,
and Sharma, N. (2012). N.: Multi-class twitter emotion
classification: A new approach. International Journal
of Applied Information Systems, pages 48–53.
Baziotis, C., Athanasiou, N., Chronopoulou, A., Kolovou,
A., Paraskevopoulos, G., Ellinas, N., Narayanan, S.,
and Potamianos, A. (2018). Ntua-slp at semeval-2018
task 1: Predicting affective content in tweets with deep
attentive rnns and transfer learning.
Beck, A. T. (1970). Cognitive therapy: Nature and relation
to behavior therapy. Behavior Therapy, 1(2):184–200.
Beck, A. T. (1976). Cognitive therapy and the emotional
disorders.
Beck, J. S. (2011). Cognitive behavior therapy: Basics and
beyond (2nd ed.).
Beck, A. T, R. A. J. S. B. F. . E. G. (1987). Cognitive
therapy of depression.
Bracewell, D., Minato, J., Ren, F., and Kuroiwa, S.
(2006). Determining the emotion of news articles.
pages 918– 923.
Bruijniks, S., Bosmans, J., Peeters, F., Hollon, S., Oppen,
P., van den Boogaard, T. M., Dingemanse, P.,
Cuijpers, P., Arntz, A., Franx, G., and Huibers, M.
(2015). Frequency and change mechanisms of
psychotherapy among depressed patients: Study
protocol for a multicenter randomized trial comparing
twice-weekly versus once-weekly sessions of cbt and
ipt. BMC psychiatry, 15:137.
Cachola, I., Holgate, E., Preotiuc-Pietro, D., and Li, J. J.
(2018). Expressively vulgar: The socio-dynamics of
vulgarity and its effects on sentiment analysis in social
media. In COLING.
Campan, A., Atnafu, T., Truta, T., and Nolan, J. (2018). Is
data collection through twitter streaming api useful for
academic research? pages 3638–3643.
Chatterjee, A., Gupta, U., Chinnakotla, M. K., Srikanth,
R., Galley, M., and Agrawal, P. (2019). Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.
Cliche, M. (2017). Bbtwtr at semeval-2017 task 4: Twitter
sentiment analysis with cnns and lstms. pages 573–
580.
de Oliveira, I. (2012). Assessing and Restructuring
Dysfunctional Cognitions.
Dreiseitl, S. and Ohno-Machado, L. (2002). Logistic
regression and artificial neural network classification
models: a methodology review. Journal of Biomedical
Informatics, 35(5):352–359.
Estival, D., Nowak, C., and Zschorn, A. (2004). Towards
ontology-based natural language processing.
Proceedings of NLP-XML 2004.
Gruber, T. (1993). A translation approach to portable
ontology specifications. Knowledge Acquisition,
5:199– 220.
Haggag, M., Fathy, S., and Elhaggar, N. (2015).
Ontologybased textual emotion detection.
International Journal of Advanced Computer Science
and Applications
, 6.
Hasan, M., Agu, E., and Rundensteiner, E. A. (2014).
Using hashtags as labels for supervised learning of
emotions in twitter messages.
Hofmann, S., Asnaani, A., Vonk, I., Sawyer, A., and Fang,
A. (2012). The efficacy of cognitive behavioral therapy: A
review of meta-analyses. Cognitive therapy and
research, 36:427–440.
Hu, H., Phan, N. H., Geller, J., Iezzi, S., Vo, H., Dou, D.,
and Chun, S. (2019). An ensemble deep learning
model for drug abuse detection in sparse twittersphere.
Minu, R. I. and R.Ezhilarasi (2012). Automatic emotion
recognition and classification. volume 38.
Morris, R., Schueller, S., and Picard, R. (2015). Efficacy
of a web-based, crowdsourced peer-to-peer cognitive
reappraisal platform for depression: Randomized
controlled trial. Journal of Medical Internet Research,
17:e72.
Mozeticˇ, I., Grcˇar, M., and Smailovic´, J. (2016).
Multilingual twitter sentiment classification: The role
of human annotators.
Rojas-Barahona, L., Tseng, B.-H., Dai, Y., Mansfield, C.,
Ramadan, O., Ultes, S., Crawford, M., and
Gasˇic´,
M. (2018). Deep learning for language understanding of
mental health concepts derived from cognitive
behavioural therapy. pages 44–54.
Rosenthal, S., Farra, N., and Nakov, P. (2017).
Semeval2017 task 4: Sentiment analysis in twitter.
pages 502–518.
Ruwaard, J., Lange, A., Schrieken, B., Dolan, C., and
Emmelkamp, P. (2012). The effectiveness of online
cognitive behavioral treatment in routine clinical
practice. PLoS ONE, 7.