Table 1: Stride frequency(UE4).
steps 1 2 3 4 5 6 7 8 9 10 11
error(step/s) 0.21 0.01 0.16 0.01 0.21 0.01 0.01 0.01 0.43 0.32 0.21
Table 2: Stride frequency(Real image).
steps 1 2 3 4 5 6
error(step/s) 0.1478 0.1961 0.1137 0.1009 0.1209 0.0000
Table 3: Stride length(Real image).
steps(cm) 1 2 3 4 5 6
error(cm) 1.25 0.62 0.55 0.08 0.62 0.55
Table 4: Estimation errors of distance.
frame 2 10 30 60 120
error[cm] 1.14 1.85 2.50 2.10 1.90
approximately 1.9 cm/s. However, the smaller the
number of frames, the larger the error. If we want
to estimate the velocity at short sections, the estima-
tion error of the distance must become negligible, to
obtain practical values for velocity estimation.
Table 5: Speed error.
frame 2 10 30 60 120
error[cm/s] 68.5 22.2 10.0 4.2 1.9
6 CONCLUSION
This paper proposes a novel scheme for support-
ing sprint training using image processing alone.
The proposed scheme estimates the stride frequency
(SF) and stride length (SL) using color processing,
based on the cosine similarity between shoes and the
ground. Experimental results indicated that SF and
SL could be estimated with negligible errors. To esti-
mate the running velocity, visual object detection and
pose estimation based on state-of-the-art deep learn-
ing schemes were applied, RetinaNet for visual object
detection, and OpenPose for pose estimation. The ex-
perimental results using the real image dataset indi-
cated that the distance error of the proposed scheme
was negligible. However, it may be insufficient for
measuring velocity in very short sections. To improve
the estimation accuracy furthermore, the accuracy of
image-based localization should be improved.
REFERENCES
Andriluka, M., Pishchulin, L., Gehler, P., and Schiele, B.
(2014). 2D human pose estimation: New benchmark
and state of the art analysis. In Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit.
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh, Y.
(2021). Openpose: Realtime multi-person 2D pose es-
timation using part affinity fields. IEEE Trans. Pattern
Anal. Mach. Intell., 43(1):172–186.
Cao, Z., Simon, T., Wei, S., and Sheikh, Y. (2017). Real-
time multi-person 2d pose estimation using part affin-
ity fields. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 1302–1310.
Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M.,
and Schiele, B. (2016). Deepercut: A deeper, stronger,
and faster multi-person pose estimation model. In
Proc. European Conference on Computer Vision,
pages 34–50.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll´ar, P.
(2017). Focal loss for dense object detection. In Proc.
IEEE Int. Conf. Comput. Vis., pages 2980–2988.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll´ar, P., and Zitnick, C. L. (2014).
Microsoft COCO: Common objects in context. In
Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T.,
editors, Proc. European Conference on Computer Vi-
sion, pages 740–755, Cham. Springer International
Publishing.
Matsuo, A., Hirokawa, R., Yanagiya, T., Matsub-
ayashi, T., Takahashi, K., Kobayashi, K., and
Sugita, M. (2016). Speed and pitch-stride anal-
ysis for men’s and woman’s 100m in the 2016
season and all seasons(in japanese). 12:74–
83. jaaf.or.jp/pdf/about/publish/2016/2016-074-
83pdf.pdf.
MICROGATE (2011). Optojumpnext.
https://training.microgate.it/en/products/optojump-
next.
NOITOM (2018). Perception neuron 2.0.
https://neuronmocap.com/.
Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., An-
driluka, M., Gehler, P. V., and Schiele, B. (2016).
Deepcut: Joint subset partition and labeling for multi
person pose estimation. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 4929–4937.