Christophides, V., Efthymiou, V., Palpanas, T., Papadakis,
G., and Stefanidis, K. (2019). End-to-end entity
resolution for big data: A survey. arXiv preprint
arXiv:1905.06397.
Cohen, W. W. and Richman, J. (2002). Learning to
match and cluster large high-dimensional data sets for
data integration. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 475–480.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani,
M., and Tang, N. (2018). Distributed representations
of tuples for entity resolution. Proceedings of the
VLDB Endowment, 11(11):1454–1467.
Fu, C., Han, X., Sun, L., Chen, B., Zhang, W., Wu, S.,
and Kong, H. (2019). End-to-end multi-perspective
matching for entity resolution. In IJCAI, pages 4961–
4967.
Goldberg, Y. (2016). A primer on neural network models
for natural language processing. Journal of Artificial
Intelligence Research, 57:345–420.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hirschberg, J. and Manning, C. D. (2015). Advances in
natural language processing. Science, 349(6245):261–
266.
Jiang, N. and de Marneffe, M.-C. (2019). Evaluating bert
for natural language inference: A case study on the
commitmentbank. In Proceedings of the 2019 con-
ference on empirical methods in natural language
processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP),
pages 6088–6093.
Konda, P., Das, S., Suganthan GC, P., Doan, A., Ardalan,
A., Ballard, J. R., Li, H., Panahi, F., Zhang, H.,
Naughton, J., et al. (2016). Magellan: Toward build-
ing entity matching management systems. Proceed-
ings of the VLDB Endowment, 9(12):1197–1208.
K
¨
opcke, H., Thor, A., and Rahm, E. (2010). Evaluation
of entity resolution approaches on real-world match
problems. Proceedings of the VLDB Endowment, 3(1-
2):484–493.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105.
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., and Soricut, R. (2019). Albert: A lite bert for
self-supervised learning of language representations.
arXiv preprint arXiv:1909.11942.
Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. (2020).
Deep entity matching with pre-trained language mod-
els. arXiv preprint arXiv:2004.00584.
Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Kr-
ishnan, G., Deep, R., Arcaute, E., and Raghavendra,
V. (2018). Deep learning for entity matching: A de-
sign space exploration. In Proceedings of the 2018
International Conference on Management of Data,
pages 19–34.
Panda, A. and Patel, A. (2012). Role of collective manage-
ment organizations for protection of performers’ right
in music industry: In the era of digitalization. The
Journal of World Intellectual Property, 15(2):155–
170.
Papadakis, G., Papastefanatos, G., Palpanas, T., and
Koubarakis, M. (2016). Boosting the efficiency
of large-scale entity resolution with enhanced meta-
blocking. Big Data Research, 6:43–63.
Primpeli, A., Peeters, R., and Bizer, C. (2019). The wdc
training dataset and gold standard for large-scale prod-
uct matching. In Companion Proceedings of The 2019
World Wide Web Conference, pages 381–386.
Qu, C., Yang, L., Qiu, M., Croft, W. B., Zhang, Y., and
Iyyer, M. (2019). Bert with history answer embedding
for conversational question answering. In Proceedings
of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1133–1136.
Robertson, S. and Zaragoza, H. (2009). The probabilistic
relevance framework: BM25 and beyond. Now Pub-
lishers Inc.
Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019).
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108.
Sarawagi, S. and Bhamidipaty, A. (2002). Interactive dedu-
plication using active learning. In Proceedings of
the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 269–
278.
Singla, P. and Domingos, P. (2006). Entity resolution with
markov logic. In Sixth International Conference on
Data Mining (ICDM’06), pages 572–582. IEEE.
Skog, D., Wimelius, H., and Sandberg, J. (2018). Digi-
tal service platform evolution: how spotify leveraged
boundary resources to become a global leader in mu-
sic streaming. In Proceedings of the 51st Hawaii In-
ternational Conference on System Sciences.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. arXiv preprint
arXiv:1706.03762.
Entity Linking of Sound Recordings and Compositions with Pre-trained Language Models
481