McGrath, J., Neville, J., Stewart, T., & Cronin, J. (2020).
Upper body activity classification using an inertial
measurement unit in court and field-based sports: A
systematic review. Proceedings of the Institution of
Mechanical Engineers Part P Journal of Sports
Engineering and Technology, 235. https://doi.org/
10.1177/1754337120959754
Mclean, S. G., Felin, R. E., Suedekum, N., Calabrese, G.,
Passerallo, A., & Joy, S. (2007). Impact of Fatigue on
Gender-Based High-Risk Landing Strategies. Medicine
& Science in Sports & Exercise, 39(3), 502–514.
https://doi.org/10.1249/mss.0b013e3180d47f0
Meeuwisse, W. H. (1994). Assessing Causation in Sport
Injury: A Multifactorial Model. Clinical Journal of
Sport Medicine, 4(3), 166–170.
Meeuwisse, W. H., Tyreman, H., Hagel, B., & Emery, C.
(2007). A dynamic model of etiology in sport injury:
The recursive nature of risk and causation. Clinical
Journal of Sport Medicine: Official Journal of the
Canadian Academy of Sport Medicine, 17(3), 215–219.
https://doi.org/10.1097/JSM.0b013e3180592a48
Mora, S. V., & Knottenbelt, W. J. (2017). Deep Learning
for Domain-Specific Action Recognition in Tennis.
2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 170–178.
https://doi.org/10.1109/CVPRW.2017.27
Naglah, A., Khalifa, F., Mahmoud, A., Ghazal, M., Jones,
P., Murray, T., Elmaghraby, A. S., & El-baz, A. (2018).
Athlete-Customized Injury Prediction using Training
Load Statistical Records and Machine Learning. 2018
IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), 459–464.
https://doi.org/10.1109/ISSPIT.2018.8642739
Nippert, A. H., & Smith, A. M. (2008). Psychologic Stress
Related to Injury and Impact on Sport Performance.
Physical Medicine and Rehabilitation Clinics of North
America, 19(2), 399–418. https://doi.org/10.1016/
j.pmr.2007.12.003
Oliver, J. L., Ayala, F., De Ste Croix, M. B. A., Lloyd, R.
S., Myer, G. D., & Read, P. J. (2020). Using machine
learning to improve our understanding of injury risk
and prediction in elite male youth football players.
Journal of Science and Medicine in Sport, 23(11), 1044–
1048. https://doi.org/10.1016/j.jsams.2020.04.021
Olsen, O. E., Myklebust, G., Engebretsen, L., Holme, I., &
Bahr, R. (2003). Relationship between floor type and
risk of ACL injury in team handball. Scandinavian
Journal of Medicine & Science in Sports, 13(5), 299–
304. https://doi.org/10.1034/j.1600-0838.2003.00329.x
Piergiovanni, A. J., & Ryoo, M. S. (2019). Early Detection
of Injuries in MLB Pitchers from Video. 2019
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2431–2438.
https://doi.org/10.1109/CVPRW.2019.00298
Radovanovic, S., Petrovic, A., Delibašić, B., & Suknović,
M. (2019). Ski Injury Predictions with Explanations
(pp. 148–160). https://doi.org/10.1007/978-3-030-
33110-8_13
Rajšp, A., & Fister, I. (2020). A Systematic Literature
Review of Intelligent Data Analysis Methods for Smart
Sport Training. Applied Sciences, 10(9), 3013.
https://doi.org/10.3390/app10093013
Richter, C., O’Reilly, M., & Delahunt, E. (2021). Machine
learning in sports science: Challenges and
opportunities. Sports Biomechanics, 0(0), 1–7.
https://doi.org/10.1080/14763141.2021.1910334
Rommers, N., Rössler, R., Verhagen, E., Vandecasteele, F.,
Verstockt, S., Vaeyens, R., Lenoir, M., D’hondt, E., &
Witvrouw, E. (2020). A Machine Learning Approach to
Assess Injury Risk in Elite Youth Football Players.
Medicine & Science in Sports & Exercise, 52(8), 1745–
1751. https://doi.org/10.1249/MSS.0000000000002305
Rossi, A., Pappalardo, L., Cintia, P., Fernández, J., Iaia, F.,
& Medina, D. (2017, September 1). Who is going to get
hurt? Predicting injuries in professional soccer.
Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernàndez,
J., & Medina, D. (2018). Effective injury forecasting in
soccer with GPS training data and machine learning.
PLOS ONE, 13(7), e0201264. https://doi.org/10.1371/
journal.pone.0201264
Ruddy, J. D., Cormack, S. J., Whiteley, R., Williams, M.
D., Timmins, R. G., & Opar, D. A. (2019). Modeling
the Risk of Team Sport Injuries: A Narrative Review of
Different Statistical Approaches. Frontiers in
Physiology, 10, 829. https://doi.org/10.3389/fphys.20
19.00829
Ruddy, J. D., Shield, A. J., Maniar, N., Williams, M. D.,
Duhig, S., Timmins, R. G., Hickey, J., Bourne, M. N.,
& Opar, D. A. (2018). Predictive Modeling of
Hamstring Strain Injuries in Elite Australian
Footballers. Medicine and Science in Sports and
Exercise, 50(5), 906–914. https://doi.org/10.1249/
MSS.0000000000001527
Sharma, M., Srivastava, R., Anand, A., Prakash, D., &
Kaligounder, L. (2017). Wearable motion sensor based
phasic analysis of tennis serve for performance
feedback. 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
5945–5949. https://doi.org/10.1109/ICASSP.2017.79
53297
Skublewska-Paszkowska, M., Powroznik, P., & Lukasik, E.
(2020). Learning Three Dimensional Tennis Shots
Using Graph Convolutional Networks. Sensors, 20(21),
6094. https://doi.org/10.3390/s20216094
Song, H., xiu-ying Han, Montenegro-Marin, C. E., &
krishnamoorthy, S. (2021). Secure prediction and
assessment of sports injuries using deep learning based
convolutional neural network. Journal of Ambient
Intelligence and Humanized Computing, 12(3), 3399–
3410. https://doi.org/10.1007/s12652-020-02560-4
Su, Y. (2019). Implementation and Rehabilitation
Application of Sports Medical Deep Learning Model
Driven by Big Data. IEEE Access, 7, 156338–156348.
https://doi.org/10.1109/ACCESS.2019.2949643
Taborri, J., Molinaro, L., Santospagnuolo, A., Vetrano, M.,
Vulpiani, M. C., & Rossi, S. (2021). A Machine-
Learning Approach to Measure the Anterior Cruciate
Ligament Injury Risk in Female Basketball Players.
Sensors, 21(9), 3141. https://doi.org/10.3390/s21093
141