REFERENCES
Aivaliotis, P., Georgoulias, K., and Alexopoulos, K. (2019).
Using digital twin for maintenance applications in
manufacturing: State of the Art and Gap analysis. In
2019 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC), pages 1–5,
Valbonne Sophia-Antipolis, France. IEEE.
Amrani, M., Blouin, D., Heinrich, R., Rensink, A.,
Vangheluwe, H., and Wortmann, A. (2021). Multi-
paradigm modelling for cyber–physical systems: a de-
scriptive framework. Software and Systems Modeling.
Bevilacqua, M., Bottani, E., Ciarapica, F. E., Costantino,
F., Donato, L. D., Ferraro, A., Mazzuto, G., Monteri
`
u,
A., Nardini, G., Ortenzi, M., Paroncini, M., Pirozzi,
M., Prist, M., Quatrini, E., Tronci, M., and Vignali, G.
(2020). Digital twin reference model development to
prevent operators’ risk in process plants. Sustainabil-
ity (Switzerland), 12(3).
Bradac, Z., Marcon, P., Zezulka, F., Arm, J., and Benesl,
T. (2019). Digital Twin and AAS in the Industry 4.0
Framework. IOP Conference Series: Materials Sci-
ence and Engineering, 618:012001.
Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., and Tao, F.
(2018). Cyber-physical integration for moving digi-
tal factories forward towards smart manufacturing: A
survey. The International Journal of Advanced Man-
ufacturing Technology, 97(1-4):1209–1221.
Cimino, C., Negri, E., and Fumagalli, L. (2019). Review of
digital twin applications in manufacturing. Computers
in Industry, 113:103130.
Czarnecki, K. (2004). Overview of generative software de-
velopment. In Ban
ˆ
atre, J., Fradet, P., Giavitto, J.,
and Michel, O., editors, Unconventional Program-
ming Paradigms, International Workshop UPP, Re-
vised Selected and Invited Papers, volume 3566 of
LNCS, pages 326–341. Springer.
Czarnecki, K., Østerbye, K., and V
¨
olter, M. (2002). Gener-
ative programming. In N
´
u
˜
nez, J. H. and Moreira, A.
M. D., editors, Object-Oriented Technology, ECOOP
2002 Workshops and Posters, volume 2548 of LNCS,
pages 15–29. Springer.
de Weck, O. L., Roos, D., Magee, C. L., and Vest, C. M.
(2011). Life-Cycle Properties of Engineering Systems:
The Ilities, pages 65–96. MIT Press.
Feng, H., Gomes, C. a., Thule, C., Lausdahl, K., Iosifidis,
A., and Larsen, P. G. (2021). Introduction To Digi-
tal Twin Engineering. In 2021 Annual Modeling and
Simulation Conference (ANNSIM).
Garnier, J.-L., Bachatene, H., and Nowodzienski, P. (2020).
Architecture Patterns for Digital Twins in Space Ap-
plications. Presentation at the AFNeT Standard-
ization Days: https://download.afnet.fr/ASD2020/
ASD2020-13a-DigitalTwin-JeanLucGarnier.pdf, ac-
cessed: 2021-05-28.
Grieves, M. and Vickers, J. (2017). Digital Twin: Mitigat-
ing Unpredictable, Undesirable Emergent Behavior in
Complex Systems. In Transdisciplinary Perspectives
on Complex Systems, pages 85–113. Springer.
Kalman, R. E. (1960). A New Approach to Linear Filtering
and Prediction Problems. Journal of Basic Engineer-
ing, 82(1):35–45.
Kang, K. and Lee, H. (2013). Variability Modeling. In
Systems Software and Variability Management, pages
25–42.
Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented domain
analysis (FODA) feasibility study. Technical report,
Carnegie-Mellon University.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., and Sihn,
W. (2018). Digital Twin in manufacturing: A cat-
egorical literature review and classification. IFAC-
PapersOnLine, 51(11):1016–1022.
Kutin, A. A., Bushuev, V. V., and Molodtsov, V. V. (2019).
Digital twins of mechatronic machine tools for mod-
ern manufacturing. IOP Conference Series: Materials
Science and Engineering, 568:012070.
Lin, W. D. and Low, M. Y. H. (2019). Concept and imple-
mentation of a cyber-physical digital twin for a SMT
line. In 2019 IEEE International Conference on In-
dustrial Engineering and Engineering Management
(IEEM), pages 1455–1459.
Lu, Y., Liu, C., Wang, K. I.-K., Huang, H., and Xu,
X. (2020). Digital Twin-driven smart manufactur-
ing: Connotation, reference model, applications and
research issues. Robotics and Computer-Integrated
Manufacturing, 61:101837.
Madni, A. M., Madni, C. C., and Lucero, S. D. (2019).
Leveraging Digital Twin Technology in Model-Based
Systems Engineering. Systems, 7(1):7.
Negri, E., Fumagalli, L., and Macchi, M. (2017). A Review
of the Roles of Digital Twin in CPS-based Production
Systems. Procedia Manufacturing, 11:939–948.
Paredis, R. and Vangheluwe, H. (2021). Exploring A Dig-
ital Shadow Design Workflow By Means Of A Line
Following Robot Use-Case. In 2021 Annual Model-
ing and Simulation Conference (ANNSIM).
Park, H., Easwaran, A., and Andalam, S. (2019). Chal-
lenges in Digital Twin Development for Cyber-
Physical Production Systems. In Chamberlain, R.,
Taha, W., and T
¨
orngren, M., editors, Cyber Physical
Systems. Model-Based Design, volume 11615, pages
28–48. Springer International Publishing, Cham.
Rosen, R., von Wichert, G., Lo, G., and Bettenhausen, K. D.
(2015). About The Importance of Autonomy and Dig-
ital Twins for the Future of Manufacturing. IFAC-
PapersOnLine, 48(3):567–572.
Tao, F., Zhang, H., Liu, A., and Nee, A. Y. C. (2019). Digi-
tal Twin in Industry: State-of-the-Art. IEEE Transac-
tions on Industrial Informatics, 15(4):2405–2415.
Tekinerdogan, B. and Verdouw, C. (2020). Systems Archi-
tecture Design Pattern Catalog for Developing Digital
Twins. Sensors, 8(18):5103.
Van Acker, B., Mertens, J., De Meulenaere, J., and De-
nil, J. (2021). Validity Frame Supported Digital
Twin Design of Complex Cyber-Physical Systems. In
2021 Annual Modeling and Simulation Conference
(ANNSIM).
Zhang, H., Ma, L., Sun, J., Lin, H., and Th
¨
urer, M. (2019).
Digital Twin in Services and Industrial Product Ser-
vice Systems:. Procedia CIRP, 83:57–60.
IN4PL 2021 - 2nd International Conference on Innovative Intelligent Industrial Production and Logistics
182