• Perform experiments running the components in-
side VMs with more CPU and RAM to analyze
the impact in the frame processing and inference
process.
ACKNOWLEDGEMENTS
We thank the Center of Research, Development, and
Innovation for Information, Communication, and Au-
tomation Technologies - VIRTUS/UFCG for support-
ing this work’s development. This work was partially
financed by the 3rd RDI Agreement between SOF-
TEX and UFCG - Project Edge Framework.
REFERENCES
Ananthanarayanan, G., Bahl, P., Bod
´
ık, P., Chintalapudi,
K., Philipose, M., Ravindranath, L., and Sinha, S.
(2017). Real-time video analytics: The killer app for
edge computing. Computer, 50(10):58–67.
Ara
´
ujo, M., Maia, M. E. F., Rego, P. A. L., and De Souza,
J. N. (2020). Performance analysis of computational
offloading on embedded platforms using the gRPC
framework. In Mena, F. M., Yucatan, U. A. D., Mex-
ico, Duarte, E., of Parana, F. U., and Brazil, editors,
8th International Workshop on ADVANCEs in ICT In-
frastructures and Services (ADVANCE 2020), pages
1–8, Canc
´
un, Mexico. Candy E. Sansores, Universi-
dad del Caribe, Mexico, Nazim Agoulmine, IBISC
Lab, University of Evry - Paris-Saclay University.
Arca, A., Carta, S., Giuliani, A., Stanciu, M., and Recupero,
D. (2020). Automated tag enrichment by semantically
related trends. In Marchiori, M., Mayo, F., and Filipe,
J., editors, WEBIST 2020 - Proceedings of the 16th
International Conference on Web Information Systems
and Technologies, pages 183–193. SciTePress.
Filali, A., Abouaomar, A., Cherkaoui, S., Kobbane, A., and
Guizani, M. (2020). Multi-access edge computing: A
survey. IEEE Access, 8:197017–197046.
Indrasiri, K. and Kuruppu, D. (2020). gRPC: up and run-
ning: building cloud native applications with Go and
Java for Docker and Kubernetes. O’Reilly Media.
Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H., and Li, Z.
(2020). Microservices: architecture, container, and
challenges. In 2020 IEEE 20th International Con-
ference on Software Quality, Reliability and Security
Companion (QRS-C), pages 629–635.
Pasandi, H. B. and Nadeem, T. (2020). Convince: Col-
laborative cross-camera video analytics at the edge.
In 2020 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom
Workshops), pages 1–5.
Pham, Q.-V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le,
L. B., Hwang, W.-J., and Ding, Z. (2020). A survey of
multi-access edge computing in 5g and beyond: Fun-
damentals, technology integration, and state-of-the-
art. IEEE Access, 8:116974–117017.
Psaila., G., Marrara., S., and Fosci., P. (2020). Soft query-
ing geojson documents within the j-co framework.
In Proceedings of the 16th International Conference
on Web Information Systems and Technologies - WE-
BIST,, pages 253–265. INSTICC, SciTePress.
Randazzo, A. and Tinnirello, I. (2019). Kata containers:
An emerging architecture for enabling mec services in
fast and secure way. In 2019 Sixth International Con-
ference on Internet of Things: Systems, Management
and Security (IOTSMS), pages 209–214.
Rao, A., Lanphier, R., and Schulzrinne, H. (1998). Real
Time Streaming Protocol (RTSP). RFC 2326.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. pages 4510–4520.
Sawant, O. V. (2019). Combating dirty data using data vir-
tualization. In 2019 IEEE 5th International Confer-
ence for Convergence in Technology (I2CT), pages 1–
5.
Sunyaev, A. (2020). Fog and Edge Computing, pages 237–
264. Springer International Publishing, Cham.
Taktek., E., Thakker., D., and Neagu., D. (2018). Compari-
son between range-based and prefix dewey encoding.
In Proceedings of the 14th International Conference
on Web Information Systems and Technologies - WE-
BIST,, pages 364–368. INSTICC, SciTePress.
Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and
Sabella, D. (2017). On multi-access edge computing:
A survey of the emerging 5g network edge cloud ar-
chitecture and orchestration. IEEE Communications
Surveys Tutorials, 19(3):1657–1681.
Xu, Z., Wu, J., Xia, Q., Zhou, P., Ren, J., and Liang, H.
(2020). Identity-aware attribute recognition via real-
time distributed inference in mobile edge clouds. MM
’20, page 3265–3273, New York, NY, USA. Associa-
tion for Computing Machinery.
Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., and Li,
Q. (2017). Lavea: Latency-aware video analytics on
edge computing platform. In Proceedings of the Sec-
ond ACM/IEEE Symposium on Edge Computing, SEC
’17, New York, NY, USA. Association for Computing
Machinery.
Zhang, H., Ananthanarayanan, G., Bodik, P., Philipose,
M., Bahl, P., and Freedman, M. J. (2017). Live
video analytics at scale with approximation and delay-
tolerance. In Proceedings of the 14th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI’17, page 377–392, USA. USENIX Asso-
ciation.
Zou, Z., Jin, Y., Nevalainen, P., Huan, Y., Heikkonen, J.,
and Westerlund, T. (2019). Edge and fog computing
enabled ai for iot-an overview. In 2019 IEEE Inter-
national Conference on Artificial Intelligence Circuits
and Systems (AICAS), pages 51–56.
Experimental Evaluation of the Message Formats’ Impact for Communication in Multi-party Edge Computing Applications
543