Becker, T. and Intoyoad, W. (2017). Context aware process
mining in logistics. Procedia Cirp, 63:557–562.
Berti, A., van Zelst, S. J., and van der Aalst, W. M. (2019).
PM4Py Web Services: Easy development, integration
and deployment of process mining features in any ap-
plication stack. In BPM (PhD/Demos), pages 174–
178.
Bigliardi, B., Bottani, E., and Casella, G. (2020). Enabling
technologies, application areas and impact of Industry
4.0: A bibliographic analysis. Procedia Manufactur-
ing, 42:322–326.
Caimo, A. and Gollini, I. (2020). A multilayer exponen-
tial random graph modelling approach for weighted
networks. Computational Statistics & Data Analysis,
142.
Chen, P.-Y. and Hero, A. O. (2017). Multilayer spectral
graph clustering via convex layer aggregation: The-
ory and algorithms. IEEE Transactions on Signal and
Information Processing over Networks, 3(3):553–567.
Culot, G., Nassimbeni, G., Orzes, G., and Sartor, M. (2020).
Behind the definition of Industry 4.0: Analysis and
open questions. International Journal of Production
Economics, 226.
da Rosa Righi, R., Alberti, A. M., and Singh, M. (2020).
Blockchain Technology for Industry 4.0. Springer.
Dasiopoulou, S., Saathoff, C., Mylonas, P., Avrithis, Y.,
Kompatsiaris, Y., Staab, S., and Strinztis, M. G.
(2008). Introducing context and reasoning in visual
content analysis: An ontology-based framework. In
Semantic Multimedia and Ontologies, pages 99–122.
Springer.
Drakopoulos, G., Kafeza, E., Mylonas, P., and Iliadis, L.
(2021). Transform-based graph topology similarity
metrics. NCAA, 1(1).
Drakopoulos, G. and Mylonas, P. (2020). Evaluating graph
resilience with tensor stack networks: A keras imple-
mentation. NCAA, 32(9):4161–4176.
Egger, A., ter Hofstede, A. H., Kratsch, W., Leemans, S. J.,
R
¨
oglinger, M., and Wynn, M. T. (2020). Bot log min-
ing: Using logs from robotic process automation for
process mining. In International Conference on Con-
ceptual Modeling, pages 51–61. Springer.
Halnaut, A., Giot, R., Bourqui, R., and Auber, D. (2020).
Deep dive into deep neural networks with flows. In
VISIGRAPP, volume 3, pages 231–239.
Kontopoulos, S. and Drakopoulos, G. (2014). A space effi-
cient scheme for graph representation. In ICTAI, pages
299–303. IEEE.
Lopes, I. F. and Ferreira, D. R. (2019). A survey of pro-
cess mining competitions: The BPI challenges 2011–
2018. In International Conference on Business Pro-
cess Management, pages 263–274. Springer.
Mandke, K., Meier, J., Brookes, M. J., O’Dea, R. D.,
Van Mieghem, P., Stam, C. J., Hillebrand, A., and
Tewarie, P. (2018). Comparing multilayer brain net-
works between groups: Introducing graph metrics and
recommendations. NeuroImage, 166:371–384.
McGee, F., Ghoniem, M., Melanc¸on, G., Otjacques, B., and
Pinaud, B. (2019). The state of the art in multilayer
network visualization. In Computer Graphics Forum,
pages 125–149. Wiley Online Library.
Mercado, P., Tudisco, F., and Hein, M. (2019). General-
ized matrix means for semi-supervised learning with
multilayer graphs. arXiv preprint arXiv:1910.13951.
Metcalfe, B. (2013). Metcalfe’s law after 40 years of Ether-
net. Computer, 46(12):26–31.
Mitsyuk, A. A., Shugurov, I. S., Kalenkova, A. A., and
van der Aalst, W. M. (2017). Generating event logs
for high-level process models. Simulation Modelling
Practice and Theory, 74:1–16.
Rajput, S. and Singh, S. P. (2019). Connecting circular
economy and Industry 4.0. International Journal of
Information Management, 49:98–113.
Reinkemeyer, L. (2020). Process Mining in Action: Princi-
ples, Use Cases and Outlook. Springer Nature.
Souza, M. L. H., da Costa, C. A., de Oliveira Ramos, G.,
and da Rosa Righi, R. (2020). A survey on decision-
making based on system reliability in the context
of Industry 4.0. Journal of Manufacturing Systems,
56:133–156.
Suriadi, S., Andrews, R., ter Hofstede, A. H., and Wynn,
M. T. (2017). Event log imperfection patterns for pro-
cess mining: Towards a systematic approach to clean-
ing event logs. Information Systems, 64:132–150.
Tversky, A. (1977). Features of similarity. Psychological
Review, 84(4):327.
Verenich, I., Dumas, M., Rosa, M. L., Maggi, F. M., and
Teinemaa, I. (2019). Survey and cross-benchmark
comparison of remaining time prediction methods in
business process monitoring. ACM TIST, 10(4):1–34.
Wang, T., Ji, Z., Sun, Q., Chen, Q., and Jing, X.-Y. (2016).
Interactive multilabel image segmentation via robust
multilayer graph constraints. IEEE Transactions on
Multimedia, 18(12):2358–2371.
Xie, C., Yu, B., Zeng, Z., Yang, Y., and Liu, Q. (2020).
Multilayer Internet-of-Things middleware based on
knowledge graph. IEEE Internet of Things Journal,
8(4):2635–2648.
Zerbino, P., Aloini, D., Dulmin, R., and Mininno, V. (2018).
Process-mining-enabled audit of information systems:
Methodology and an application. Expert Systems with
Applications, 110:80–92.
Zhou, Y. and Cheung, Y.-m. (2019). Bayesian low-tubal-
rank robust tensor factorization with multi-rank deter-
mination. IEEE TPAMI.
WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies
560