fairness by algorithmic decision-making in the context
of HR recruitment and HR development. Business
Research, 13(3), 795-848. https://doi.org/10.1007/
s40685-020-00134-w
Lee, S. S., Kelley, M., Cho, M. K., Kraft, S. A., James, C.,
Constantine, M., Magnus, D. (2016). Adrift in the Gray
Zone: IRB Perspectives on Research in the Learning
Health System. AJOB Empir Bioeth, 7(2), 125-134.
https://doi.org/10.1080/23294515.2016.1155674
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020).
Federated Learning: Challenges, Methods, and Future
Directions. IEEE Signal Processing Magazine, 37(3),
50-60. https://doi.org/10.1109/MSP.2020.2975749
Li, W., Milletarì, F., Xu, D., Rieke, N., Hancox, J., Zhu, W.,
Feng, A. (2019). Privacy-preserving Federated Brain
Tumour Segmentation. arXiv e-prints. Retrieved
October 01, 2019, from https://ui.adsabs.harvard.edu/
abs/2019arXiv191000962L
Lu, X. Y. a. Y. F. a. W. F. a. J. S. a. X. T. a. S.-T. X. a. R.
(2021). Computation-efficient Deep Model Training
for Ciphertext-based Cross-silo Federated Learning.
arXiv:2002.09843.
Markose, A., Krishnan, R., & Ramesh, M. (2016). Medical
ethics. J Pharm Bioallied Sci, 8(Suppl 1), S1-S4.
https://doi.org/10.4103/0975-7406.191934
Mulshine, M. A major flaw in google's algorithm allegedly
tagged two black people's faces with the word 'gorillas'.
In BusinessInsider, 2015.
Nicholas Carlini, C. L., Úlfar Erlingsson, Jernej Kos, Dawn
Song. (2019). The Secret Sharer: Evaluating and
Testing Unintended Memorization in Neural Networks.
arXiv:1802.08232
Noor, P. (2020). Can we trust AI not to further embed racial
bias and prejudice? BMJ, 368, m363. https://
doi.org/10.1136/bmj.m363
Norgeot, B., Glicksberg, B. S., & Butte, A. J. (2019). A call
for deep-learning healthcare. Nature Medicine, 25(1),
14-15. https://doi.org/10.1038/s41591-018-0320-3
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S.
(2019). Dissecting racial bias in an algorithm used to
manage the health of populations. Science, 366(6464),
447-453. https://doi.org/10.1126/science.aax2342
Policy, T. W. H. O. o. S. a. T. (2018). Summary Of The 2018
White House Summit On Artificial Intelligence For
American Industry https://www.hsdl.org/
?view&did=811092.
Price, W. N. (2018). Big data and black-box medical
algorithms. Sci Transl Med, 10(471). https://doi.org/
10.1126/scitranslmed.aao5333
Raileanu, L. E., & Stoffel, K. (2004). Theoretical
Comparison between the Gini Index and Information
Gain Criteria. Annals of Mathematics and Artificial
Intelligence, 41(1), 77-93. https://doi.org/10.1023/
B:AMAI.0000018580.96245.c6
Rajendran, S., Obeid, J. S., Binol, H., D Agostino, R.,
Foley, K., Zhang, W., . . . Topaloglu, U. (2021). Cloud-
Based Federated Learning Implementation Across
Medical Centers. JCO Clin Cancer Inform, 5, 1-11.
https://doi.org/10.1200/CCI.20.00060
Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H. R.,
Albarqouni, S., Cardoso, M. J. (2020). The future of
digital health with federated learning. NPJ Digit Med,
3, 119. https://doi.org/10.1038/s41746-020-00323-1
Rodrigues, R. (2020). Legal and human rights issues of AI:
Gaps, challenges and vulnerabilities. Journal of
Responsible Technology, 4, 100005. https://doi.org/
https://doi.org/10.1016/j.jrt.2020.100005
SaMD, F. https://www.fda.gov/media/122535/download.
Retrieved February from
Sarma, K. V., Harmon, S., Sanford, T., Roth, H. R., Xu, Z.,
Tetreault, J., Arnold, C. W. (2021). Federated learning
improves site performance in multicenter deep learning
without data sharing. J Am Med Inform Assoc. https://
doi.org/10.1093/jamia/ocaa341
Scientist, F. o. A. (2021). Defense Primer: U.S. Policy on
Lethal Autonomous Weapon Systems. Retrieved May
2021 from https://fas.org/sgp/crs/natsec/IF11150.pdf
Shokri, R., & Shmatikov, V. (2015, 29 Sept.-2 Oct. 2015).
Privacy-preserving deep learning. 2015 53rd Annual
Allerton Conference on Communication, Control, and
Computing (Allerton),
Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017,
22-26 May 2017). Membership Inference Attacks
Against Machine Learning Models. 2017 IEEE
Symposium on Security and Privacy (SP),
Technology, N. S. a. T. C. C. o. (October 2016).
https://obamawhitehouse.archives.gov/sites/default/fil
es/whitehouse_files/microsites/ostp/NSTC/preparing_f
or_the_future_of_ai.pdf. Retrieved February, 2021
from
Topol, E. J. (2019). High-performance medicine: the
convergence of human and artificial intelligence.
Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/
s41591-018-0300-7
Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., & Zhou, Y. (2019). A Hybrid Approach
to Privacy-Preserving Federated Learning. Informatik
Spektrum, 42(5), 356-357. https://doi.org/10.1007/
s00287-019-01205-x
Vyas, S., Gupta, M., & Yadav, R. (2019, 4-6 Feb. 2019).
Converging Blockchain and Machine Learning for
Healthcare. 2019 Amity International Conference on
Artificial Intelligence (AICAI),
Warnat-Herresthal, S., Schultze, H., Shastry, K. L.,
Manamohan, S., Mukherjee, S., Garg, V., . . . Deutsche,
C.-O. I. (2021). Swarm Learning for decentralized and
confidential clinical machine learning. Nature. https://
doi.org/10.1038/s41586-021-03583-3
Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Poor, H. V. (2020). Federated Learning With
Differential Privacy: Algorithms and Performance
Analysis. IEEE Transactions on Information Forensics
and Security, 15, 3454-3469. https://doi.org/10.1109/
TIFS.2020.2988575
Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X.,
Doshi-Velez, F., Goldenberg, A. (2019). Do no harm: a
roadmap for responsible machine learning for health
care. Nature Medicine, 25(9), 1337-1340. https://
doi.org/10.1038/s41591-019-0548-6