the generation of an emotional model aimed to
estimate the passengers state from their physiological
signals.
ACKNOWLEDGEMENTS
This work were funded by the European Union’s
Horizon 2020 Research and Innovation Program
SUaaVE project: “SUpporting acceptance of
automated Vehicles”; under Grant Agreement No.
814999.
REFERENCES
Bazilinskyy, P., Kyriakidis, M., & de Winter, J. (2015). An
international crowdsourcing study into people’s
statements on fully automated driving. Procedia
Manufacturing, 3, 2534–2542.
Belda, J.-M., Iranzo, S., Jimenez, V., Mateo, B., Silva, J.,
Palomares, N., Laparra-Hernández, J., & Solaz, J.
(2021). Identification of relevant scenarios in the
framework of automated vehicles to study the emotional
state of the passengers. 10th International Congress on
Transportation Research, Rhodes, Greece.
Bong, S. Z., Murugappan, M., & Yaacob, S. (2013).
Methods and approaches on inferring human emotional
stress changes through physiological signals: A review.
International Journal of Medical Engineering and
Informatics, 5(2), 152–162.
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion:
The self-assessment manikin and the semantic
differential. Journal of Behavior Therapy and
Experimental Psychiatry, 25(1), 49–59.
Braun, M., Weber, F., & Alt, F. (2020). Affective
Automotive User Interfaces–Reviewing the State of
Emotion Regulation in the Car. ArXiv Preprint
ArXiv:2003.13731.
Cuzzocrea, A., Kittl, C., Simos, D. E., Weippl, E., & Xu, L.
(Eds.). (2013). Availability, Reliability, and Security in
Information Systems and HCI (Vol. 8127). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-
40511-2
Drewitz, U., Ihme, K., Bahnmüller, C., Fleischer, T., La,
H., Pape, A.-A., Gräfing, D., Niermann, D., & Trende,
A. (2020). Towards user-focused vehicle automation:
The architectural approach of the AutoAkzept project.
International Conference on Human-Computer
Interaction, 15–30.
Geethanjali, B., Adalarasu, K., Hemapraba, A., Kumar, S.
P., & Rajasekeran, R. (2017). Emotion analysis using
SAM (self-assessment manikin) scale. Biomedical
Research.
Holzinger, A., Kieseberg, P., Tjoa, A. M., & Weippl, E.
(Eds.). (2020). Machine Learning and Knowledge
Extraction: 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG
12.9 International Cross-Domain Conference, CD-
MAKE 2020, Dublin, Ireland, August 25–28, 2020,
Proceedings (Vol. 12279). Springer International
Publishing. https://doi.org/10.1007/978-3-030-57321-8
Jang, E.-H., Park, B. J., Kim, S. H., & Sohn, J. H. (2012).
Emotion classification by machine learning algorithm
using physiological signals. Proc. of Computer Science
and Information Technology. Singapore, 25, 1–5.
Lee, J. D., & See, K. A. (2004). Trust in automation:
Designing for appropriate reliance. Human Factors,
46(1), 50–80.
Mohamad, Y. (2005). Integration von emotionaler
Intelligenz in Interface-Agenten am Beispiel einer
Trainingssoftware für lernbehinderte Kinder. RWTH
Aachen University.
Nummenmaa, L., & Niemi, P. (2004). Inducing affective
states with success-failure manipulations: A meta-
analysis. Emotion, 4(2), 207–214. https://doi.org/
10.1037/1528-3542.4.2.207
Paddeu, D., Parkhurst, G., & Shergold, I. (2020). Passenger
comfort and trust on first-time use of a shared
autonomous shuttle vehicle. Transportation Research
Part C: Emerging Technologies, 115, 102604.
Post, J. M. M., Ünal, A. B., & Veldstra, J. L. (2020).
Deliverable 1.2. Model and guidelines depicting key
psychological factors that explain and promote public
acceptability of CAV among different user groups.
H2020 SUaaVE project.
SAE International. (2021). J3016C: Taxonomy and
Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles - SAE
International.
Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X.,
& Yang, X. (2018). A review of emotion recognition
using physiological signals. Sensors, 18(7), 2074.
Suja, P., Tripathi, S., & Deepthy, J. (2014). Emotion
Recognition from Facial Expressions Using Frequency
Domain Techniques. In S. M. Thampi, A. Gelbukh, &
J. Mukhopadhyay (Eds.), Advances in Signal
Processing and Intelligent Recognition Systems (pp.
299–310). Springer International Publishing.
https://doi.org/10.1007/978-3-319-04960-1_27