REFERENCES
Adali, S., Escriva, R., Goldberg, M. K., Hayvanovych,
M., Magdon-Ismail, M., Szymanski, B. K., Wallace,
W. A., and Williams, G. T. (2010). Measuring behav-
ioral trust in social networks. In IEEE International
Conference on Intelligence and Security Informatics
(ISI), pages 150–152.
Aggarwal, C. C. (2018). Neural Networks and Deep Learn-
ing - A Textbook. Springer.
Alowisheq, A., Alrajebah, N., Alrumikhani, A., Al-
Shamrani, G., Shaabi, M., Al-Nufaisi, M., Alnasser,
A., and Alhumoud, S. (2017). Investigating the re-
lationship between trust and sentiment agreement in
arab twitter users. In 9th International Conference on
Social Computing and Social Media (SCSM), volume
10283, pages 236–245.
Boertjes, E. M., Gerrits, B., Kooij, R. E., van Maanen, P.,
Raaijmakers, S., and de Wit, J. (2012). Towards a
social media-based model of trust and its application.
In 10th IFIP TC International Conference on Human
Choice and Computers (HCC10), volume 386, pages
250–263.
Buduma, N. and Locascio, N. (2017). Fundamentals of
Deep Learning: Designing Next-Generation Machine
Intelligence Algorithms. O’Reilly Media, Inc.
Cardinale, Y., Dongo, I., Robayo, G., Cabeza, D., Aguilera,
A. I., and Medina, S. (2021). T-creo: A twitter cred-
ibility analysis framework. IEEE Access, 9:32498–
32516.
Drakopoulos, G., Kanavos, A., Mylonas, P., and Sioutas,
S. (2021). Discovering sentiment potential in twitter
conversations with hilbert-huang spectrum. Evolving
Systems, 12(1):3–17.
Drakopoulos, G., Kanavos, A., and Tsakalidis, A. K.
(2016). Evaluating twitter influence ranking with
system theory. In 12th International Conference
on Web Information Systems and Technologies (WE-
BIST), pages 113–120.
Freeman, J. A. and Skapura, D. M. (1991). Neural Net-
works: Algorithms, Applications, and Programming
Techniques. Computation and Neural Systems Series.
Addison-Wesley.
Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast
learning algorithm for deep belief nets. Neural Com-
putation, 18(7):1527–1554.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Hotho, A., N
¨
urnberger, A., and Paass, G. (2005). A brief
survey of text mining. LDV Forum, 20(1):19–62.
Kafeza, E., Kanavos, A., Makris, C., Pispirigos, G., and
Vikatos, P. (2020). T-PCCE: twitter personality based
communicative communities extraction system for big
data. IEEE Transactions on Knowledge and Data En-
gineering, 32(8):1625–1638.
Kafeza, E., Kanavos, A., Makris, C., and Vikatos, P.
(2014). T-PICE: twitter personality based influential
communities extraction system. In IEEE International
Congress on Big Data, pages 212–219.
Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H.
(2003). The eigentrust algorithm for reputation man-
agement in P2P networks. In 12th International World
Wide Web Conference (WWW), pages 640–651.
Kanavos, A., Kounelis, F., Iliadis, L., and Makris, C.
(2021). Deep learning models for forecasting aviation
demand time series. Neural Computing and Applica-
tions, pages 1–15.
Kang, B., O’Donovan, J., and H
¨
ollerer, T. (2012). Mod-
eling topic specific credibility on twitter. In 17th In-
ternational Conference on Intelligent User Interfaces
(IUI), pages 179–188.
Kaur, J. and Buttar, P. K. (2018). A systematic review on
stopword removal algorithms. International Journal
on Future Revolution in Computer Science & Com-
munication Engineering, 4(4):207–210.
Kyriazidou, I., Drakopoulos, G., Kanavos, A., Makris, C.,
and Mylonas, P. (2019). Towards predicting mentions
to verified twitter accounts: Building prediction mod-
els over mongodb with keras. In 15th International
Conference on Web Information Systems and Tech-
nologies (WEBIST), pages 25–33.
Luhn, H. P. (1960). Keyword-in-context index for techni-
cal literature (kwic index). American Documentation,
11(4):288–295.
Lumbreras, A. and Gavald
`
a, R. (2012). Applying trust
metrics based on user interactions to recommenda-
tion in social networks. In International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM), pages 1159–1164.
Morozov, E. and Sen, M. (2014). Analysing the Twitter So-
cial Graph: Whom Can we Trust? PhD thesis, MS
Thesis, Department Computer Science, University of
Nice Sophia Antipolis, Nice, France.
Patterson, J. and Gibson, A. (2017). Deep Learning: A
Practitioner’s Approach. O’Reilly Media, Inc.
Roy, A., Sarkar, C., Srivastava, J., and Huh, J. (2016). Trust-
ingness & trustworthiness: A pair of complementary
trust measures in a social network. In 2016 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pages 549–
554. IEEE Computer Society.
Savvopoulos, A., Kanavos, A., Mylonas, P., and Sioutas,
S. (2018). LSTM accelerator for convolutional object
identification. Algorithms, 11(10):157.
Sherchan, W., Nepal, S., and Paris, C. (2013). A survey
of trust in social networks. ACM Computing Surveys,
45(4):47:1–47:33.
Zamparas, V., Kanavos, A., and Makris, C. (2015). Real
time analytics for measuring user influence on twitter.
In 27th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pages 591–597.
Zhao, L., Hua, T., Lu, C., and Chen, I. (2016). A topic-
focused trust model for twitter. Computer Communi-
cations, 76:1–11.
DMMLACS 2021 - 2nd International Special Session on Data Mining and Machine Learning Applications for Cyber Security
606