news detection. Information Processing &
Management, 58(1).
Große, C. (2021). Enhanced Information Management in
Inter-organisational Planning for Critical Infrastructure
Protection: Case and Framework. In Proceedings of the
7th International Conference on Information Systems
Security and Privacy. SCITEPRESS - Science and
Technology Publications, 319–330.
Grossi, E., and Buscema, M. (2007). Introduction to
artificial neural networks. European journal of
gastroenterology & hepatology, 19(12), 1046–1054.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., et al.
(2018). Recent advances in convolutional neural
networks. Pattern Recognition, 77(11), 354–377.
Guyon, I. (1997). A Scaling Law for the Validation-Set
Training-Set Size Ratio. AT&T Bell Laboratories,
Retrieved 2021-09-01, from https://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.33.1337.
Han, J., and Moraga, C. (1995). The influence of the
sigmoid function parameters on the speed of
backpropagation learning. In J. Mira and F. Sandoval
(Eds.), Lecture Notes in Computer Science: Vol. 930.
From natural to artificial neural computation. IWANN
1995. Berlin: Springer.
Kaliyar, R. K., Goswami, A., Narang, P., and Sinha, S.
(2020). FNDNet – A deep convolutional neural
network for fake news detection. Cognitive Systems
Research, 61, 32–44.
Kapantai, E., Christopoulou, A., Berberidis, C., and
Peristeras, V. (2021). A systematic literature review on
disinformation: Toward a unified taxonomical
framework. New Media & Society, 23(5), 1301–1326.
Kumar, R., and Indrayan, A. (2011). Receiver operating
characteristic (ROC) curve for medical researchers.
Indian pediatrics, 48(4), 277–287.
Kumar, S., Asthana, R., Upadhyay, S., Upreti, N., and
Akbar, M. (2019). Fake news detection using deep
learning models: A novel approach. Transactions on
Emerging Telecommunications Technologies, 31(2).
Lewinson, E. (2020). Python for Finance Cookbook: Over
50 Recipes for Applying Modern Python Libraries to
Financial Data Analysis: Packt.
Mujeeb, S., Alghamdi, T. A., Ullah, S., Fatima, A., Javaid,
N., et al. (2019). Exploiting Deep Learning for Wind
Power Forecasting Based on Big Data Analytics.
Applied Sciences, 9(20), 4417.
Qawasmeh, E., Tawalbeh, M., and Abdullah, M. (2019).
Automatic Identification of Fake News Using Deep
Learning. In 2019 Sixth International Conference on
Social Networks Analysis, Management and Security
(SNAMS), 383–388.
Rath, P. K., and Basak, R. (2020). Automatic Detection of
Fake News Using Textual Entailment Recognition. In
2020 IEEE 17th India Council International
Conference (INDICON). IEEE. 1–6.
Reddy, P. S., Roy, D., Manoj, P., Keerthana, M., and Tijare,
P. (2019). A Study on Fake News Detection Using
Naïve Bayes, SVM, Neural Networks and LSTM.
Journal of Advanced Research in Dynamical & Control
Systems, 11(06), 942–947.
Ruchansky, N., Seo, S., and Liu, Y. (2017). CSI - A Hybrid
Deep Model for Fake News Detection. In E.-P. Lim, M.
Winslett, M. Sanderson, A. Fu, J. Sun, S. Culpepper, et
al. (Eds.), Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. New
York, NY, USA: ACM. 797–806.
Sahoo, S. R., and Gupta, B. B. (2021). Multiple features
based approach for automatic fake news detection on
social networks using deep learning. Applied Soft
Computing, 100(3), 106983.
Song, X., Petrak, J., Jiang, Y., Singh, I., Maynard, D., et al.
(2021). Classification aware neural topic model for
COVID-19 disinformation categorisation. PloS one,
16(2), e0247086.
Stanford University (2021). CS231n Convolutional Neural
Networks for Visual Recognition. Retrieved 2021-08-
31, 2021, from https://cs231n.github.io/convolutional-
networks/.
Tudjman, M., and Mikelic, N. (2003). Information Science:
Science about Information Misinformation and
Disinformation. In: InSITE Conference. Informing
Science Institute.
Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G. S.,
et al. (2020). Fake News Stance Detection Using Deep
Learning Architecture (CNN-LSTM). IEEE Access, 8,
156695–156706.
Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., et al. (2018).
EANN: Event Adversarial Neural Networks for Multi-
Modal Fake News Detection. In KDD2018. August 19-
23, 2017, London, United Kingdom. New York, NY:
Association for Computing Machinery Inc. (ACM).
Verma, A., Mittal, V., and Dawn, S. (2019). FIND: Fake
Information and News Detections using Deep Learning.
In 2019 12th International Conference on
Contemporary Computing (IC3), 1–7.
Zhang, X., and Ghorbani, A. A. (2020). An overview of
online fake news: Characterization, detection, and
discussion. Information Processing & Management,
57(2), 102025.