Brin, S. and Page, L. (1998). The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1):107–117.
Bunke, H. and Allermann, G. (1983). Inexact graph match-
ing for structural pattern recognition. Pattern Recogn.
Lett., 1(4):245–253.
Caelli, T. and Kosinov, S. (2004). An eigenspace projection
clustering method for inexact graph matching. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 26(4):515–519. Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.
Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004).
Thirty Years Of Graph Matching In Pattern Recogni-
tion. IJPRAI, 18:265–298.
Cort
´
es, X. and Serratosa, F. (2015). Learning graph-
matching edit-costs based on the optimality of the ora-
cle’s node correspondences. Pattern Recognition Let-
ters, 56:22–29.
Eiben, A. E. and Smith, J. E. (2015). Introduction to Evo-
lutionary Computing. Springer Publishing Company,
Incorporated, 2nd edition.
Escolano, F., Bonev, B., and Lozano, M. A. (2011).
Information-Geometric Graph Indexing from Bags of
Partial Node Coverages. In Jiang, X., Ferrer, M., and
Torsello, A., editors, Graph-Based Representations in
Pattern Recognition, Lecture Notes in Computer Sci-
ence, pages 52–61, Berlin, Heidelberg. Springer.
Escolano, F., Hancock, E. R., Lozano, M. A., and Curado,
M. (2017). The mutual information between graphs.
Pattern Recognition Letters, 87:12–19.
Fischer, A., Plamondon, R., Savaria, Y., Riesen, K., and
Bunke, H. (2014). A Hausdorff Heuristic for Effi-
cient Computation of Graph Edit Distance. In Fr
¨
anti,
P., Brown, G., Loog, M., Escolano, F., and Pelillo,
M., editors, Structural, Syntactic, and Statistical Pat-
tern Recognition, Lecture Notes in Computer Science,
pages 83–92, Berlin, Heidelberg. Springer.
Fuchs, M. and Riesen, K. (2021). Matching of Matching-
Graphs - A Novel Approach for Graph Classifica-
tion. In 2020 25th International Conference on Pat-
tern Recognition (ICPR), pages 6570–6576. ISSN:
1051-4651.
Jin, N., Young, C., and Wang, W. (2010). GAIA: graph
classification using evolutionary computation. In Pro-
ceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 879–890,
Indianapolis Indiana USA. ACM.
Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginal-
ized kernels between labeled graphs. In Proceedings
of the Twentieth International Conference on Interna-
tional Conference on Machine Learning, ICML’03,
pages 321–328, Washington, DC, USA. AAAI Press.
Kittler, J. (2002). Multiple Classifier Systems. In Soft Com-
puting Approach to Pattern Recognition and Image
Processing, volume 53 of Series in Machine Percep-
tion and Artificial Intelligence, pages 3–22. WORLD
SCIENTIFIC.
Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A
survey on graph kernels. Appl Netw Sci, 5(1):1–42.
Number: 1 Publisher: SpringerOpen.
Liu, G., Yang, Q., Wang, H., Wu, S., and Wittie, M. P.
(2015). Uncovering the mystery of trust in an online
social network. In 2015 IEEE Conference on Com-
munications and Network Security (CNS), pages 488–
496.
Maergner, P., Pondenkandath, V., Alberti, M., Liwicki, M.,
Riesen, K., Ingold, R., and Fischer, A. (2018). Offline
Signature Verification by Combining Graph Edit Dis-
tance and Triplet Networks. arXiv:1810.07491 [cs],
11004:470–480. arXiv: 1810.07491.
Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. (2020). TUDataset: A collec-
tion of benchmark datasets for learning with graphs.
arXiv:2007.08663 [cs, stat]. arXiv: 2007.08663.
Newman, M. (2018). Networks. Oxford University Press.
Google-Books-ID: YdZjDwAAQBAJ.
Qiu, H. and Hancock, E. R. (2006). Graph matching and
clustering using spectral partitions. Pattern Recogni-
tion, 39(1):22–34.
Riba, P., Llad
´
os, J., and Forn
´
es, A. (2020). Hierarchical
graphs for coarse-to-fine error tolerant matching. Pat-
tern Recognition Letters, 134:116–124.
Riesen, K. and Bunke, H. (2008). IAM Graph Database
Repository for Graph Based Pattern Recognition and
Machine Learning. In da Vitoria Lobo, N., Kasparis,
T., Roli, F., Kwok, J. T., Georgiopoulos, M., Anag-
nostopoulos, G. C., and Loog, M., editors, Structural,
Syntactic, and Statistical Pattern Recognition, Lecture
Notes in Computer Science, pages 287–297, Berlin,
Heidelberg. Springer.
Riesen, K. and Bunke, H. (2009). Approximate graph
edit distance computation by means of bipartite graph
matching. Image and Vision Computing, 27(7):950–
959.
Riesen, K. and Bunke, H. (2010). Graph Classification and
Clustering Based on Vector Space Embedding. World
Scientific Publishing Co., Inc., USA.
Sanfeliu, A. and Fu, K. (1983). A distance measure be-
tween attributed relational graphs for pattern recogni-
tion. IEEE Transactions on Systems, Man, and Cy-
bernetics, SMC-13(3):353–362. Conference Name:
IEEE Transactions on Systems, Man, and Cybernet-
ics.
Wale, N. and Karypis, G. (2006). Comparison of Descriptor
Spaces for Chemical Compound Retrieval and Classi-
fication. In Sixth International Conference on Data
Mining (ICDM’06), pages 678–689. ISSN: 2374-
8486.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu,
P. S. (2021). A Comprehensive Survey on Graph
Neural Networks. IEEE Transactions on Neural Net-
works and Learning Systems, 32(1):4–24. Conference
Name: IEEE Transactions on Neural Networks and
Learning Systems.
Yanardag, P. and Vishwanathan, S. (2015). Deep Graph
Kernels. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, pages 1365–1374. Association for Com-
puting Machinery, New York, NY, USA.
Improving Graph Classification by Means of Linear Combinations of Reduced Graphs
23