text also models a strategy for removing data that does
not represent the searched item, affecting the agent’s
decision-making.
We intend to pursue the following paths as fu-
ture works: (i) - Develop a new version of Sigon
framework in Python. This decision enables us to use
the most popular Machine Learning libraries with-
out the necessity of using third party libraries to in-
tegrate with Sigon agents; (ii) - explore more robust
approaches of connectionist and symbolic integration,
such as the ones provided in neural-symbolic field;
(iii) - deploy this agent in a real-world scenario and
compare it with other similar works.
ACKNOWLEDGEMENTS
This study was financed in part by the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior -
Brasil (CAPES) - Finance Code 001
REFERENCES
Anjomshoae, S., Najjar, A., Calvaresi, D., and Fr
¨
amling, K.
(2019). Explainable agents and robots: Results from
a systematic literature review. In Proceedings of the
18th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1078–1088. Interna-
tional Foundation for Autonomous Agents and Multi-
agent Systems.
Arrieta, A. B., D
´
ıaz-Rodr
´
ıguez, N., Ser, J. D., Bennetot,
A., Tabik, S., Barbado, A., Garc
´
ıa, S., Gil-L
´
opez, S.,
Molina, D., Benjamins, R., Chatila, R., and Herrera, F.
(2019). Explainable artificial intelligence (xai): Con-
cepts, taxonomies, opportunities and challenges to-
ward responsible ai.
Baltru
ˇ
saitis, T., Robinson, P., and Morency, L.-P. (2016).
Openface: an open source facial behavior analysis
toolkit. In 2016 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 1–10. IEEE.
Bennetot, A., Laurent, J.-L., Chatila, R., and D
´
ıaz-
Rodr
´
ıguez, N. (2019). Towards explainable
neural-symbolic visual reasoning. arXiv preprint
arXiv:1909.09065.
Besold, T. R., Garcez, A. d., Bader, S., Bowman, H.,
Domingos, P., Hitzler, P., K
¨
uhnberger, K.-U., Lamb,
L. C., Lowd, D., Lima, P. M. V., et al. (2017). Neural-
symbolic learning and reasoning: A survey and inter-
pretation. arXiv preprint arXiv:1711.03902.
Bratman, M. (1987). Intention, plans, and practical reason.
Brewka, G. and Eiter, T. (2007). Equilibria in heteroge-
neous nonmonotonic multi-context systems. In AAAI,
volume 7, pages 385–390.
Brewka, G., Eiter, T., and Fink, M. (2011). Nonmonotonic
multi-context systems: A flexible approach for inte-
grating heterogeneous knowledge sources. In Logic
programming, knowledge representation, and non-
monotonic reasoning, pages 233–258. Springer.
Brewka, G., Ellmauthaler, S., and P
¨
uhrer, J. (2014). Multi-
context systems for reactive reasoning in dynamic en-
vironments. In ECAI, pages 159–164.
Cabalar, P., Costantini, S., De Gasperis, G., and Formisano,
A. (2019). Multi-context systems in dynamic envi-
ronments. Annals of Mathematics and Artificial Intel-
ligence, 86(1-3):87–120.
Casali, A., Godo, L., and Sierra, C. (2005). Graded BDI
models for agent architectures. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 3487 LNAI:126–143.
Chollet, F. et al. (2018). Deep learning with Python, volume
361. Manning New York.
Dao-Tran, M. and Eiter, T. (2017). Streaming multi-context
systems. In IJCAI, volume 2017, pages 1000–1007.
De Freitas, G. S., Gelaim, T.
ˆ
A., De Mello, R. R. P., and
Silveira, R. A. (2019). Perception policies for in-
telligent virtual agents. ADCAIJ: Advances in Dis-
tributed Computing and Artificial Intelligence Jour-
nal, 8(2):87–95.
de Mello, R. R. P., Gelaim, T.
ˆ
A., and Silveira, R. A. (2018).
Negotiating agents: A model based on bdi architec-
ture and multi-context systems using aspiration adap-
tation theory as a negotiation strategy. In Conference
on Complex, Intelligent, and Software Intensive Sys-
tems, pages 351–362. Springer.
Elfenbein, H. A., Der Foo, M., White, J., Tan, H. H., and
Aik, V. C. (2007). Reading your counterpart: The
benefit of emotion recognition accuracy for effective-
ness in negotiation. Journal of Nonverbal Behavior,
31(4):205–223.
Garcez, A. d., Gori, M., Lamb, L. C., Serafini, L., Spranger,
M., and Tran, S. N. (2019). Neural-symbolic comput-
ing: An effective methodology for principled integra-
tion of machine learning and reasoning. arXiv preprint
arXiv:1905.06088.
Garnelo, M., Arulkumaran, K., and Shanahan, M. (2016).
Towards deep symbolic reinforcement learning. arXiv
preprint arXiv:1609.05518.
Garnelo, M. and Shanahan, M. (2019). Reconciling deep
learning with symbolic artificial intelligence: repre-
senting objects and relations. Current Opinion in Be-
havioral Sciences, 29:17–23.
Gelaim, T. (2021). Situation awareness and practical rea-
soning in dynamic environments. PhD thesis, Federal
University of Santa Catarina.
Gelaim, T.
ˆ
A., Hofer, V. L., Marchi, J., and Silveira, R. A.
(2019). Sigon: A multi-context system framework for
intelligent agents. Expert Systems with Applications,
119:51–60.
Glez-Pe
˜
na, D., Lourenc¸o, A., L
´
opez-Fern
´
andez, H.,
Reboiro-Jato, M., and Fdez-Riverola, F. (2014). Web
scraping technologies in an api world. Briefings in
bioinformatics, 15(5):788–797.
Goodman, B. and Flaxman, S. (2017). European union reg-
ulations on algorithmic decision-making and a “right
to explanation”. AI Magazine, 38(3):50–57.
ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence
86