Colton, S., Llano, T., Hepworth, R., Charnley, J., Gale, C.,
Baron, A., Pachet, F., Roy, P., Gervás, P., Collins, N.
(2016). The beyond the fence musical and computer
says show documentary. Proceedings of the Seventh
International Conference on Computational Creativity
Cropley, A. (2006). In praise of convergent thinking.
Creativity research journal 18, 391–404
Dean, R.T., Smith, H. (2018). The Character Thinks Ahead:
creative writing with deep learning nets and its stylistic
assessment. Leonardo 51, 504–505
DiPaola, S., Gabora, L., McCaig, G. (2018). Informing
Artificial Intelligence Generative Techniques using
Cognitive Theories of Human Creativity. Procedia
computer science 145, 158--168
DiPaola, S., McCaig, G. (2016). Using Artificial
Intelligence Techniques to Emulate the Creativity of a
Portrait Painter. In: EVA. BCS
Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M. (2017).
CAN: Creative adversarial networks, generating" art"
by learning about styles and deviating from style norms.
arXiv preprint arXiv:1706.07068
Elizabeth Davis (2019). Schubert's 'Unfinished' Symphony
completed by artificial intelligence. Classic FM
Gabora, L. (2017). Honing theory: A complex systems
framework for creativity. Nonlinear Dynamics,
Psychology, and Life Sciences
Gatys, L.A., Ecker, A.S., Bethge, M.(2016). Image style
transfer using convolutional neural networks.
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2414–2423
Goetz Richter (2019). Composers are under no threat from
AI, if Huawei’s finished Schubert symphony is a guide.
Can a smartphone replace a human composer? Sydney
Conservatorium of Music
Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep
learning. The MIT Press, Cambridge, Massachusetts,
London, England
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.
(2014). Generative adversarial nets. In: Advances in
neural information processing systems, pp. 2672–2680
Graves, A. (2013). Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850
Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D.,
Hernández-Lobato, J.M., Sánchez-Lengeling, B.,
Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D.,
Adams, R.P., Aspuru-Guzik, A. (2018). Automatic
Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS central science 4,
268–276
Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.
(2020). Meta-Learning in Neural Networks: A Survey
Hu, Z., Xie, H., Fukusato, T., Sato, T., Igarashi, T.(2019).
Sketch2VF: Sketch-based flow design with conditional
generative adversarial network. Journal of
Visualization and Computer Animation 30
Huisman, M., van Rijn, J.N., Plaat, A. (2021). A survey of
deep meta-learning. Artificial Intelligence Review 54,
4483–4541
Johnson, J., Alahi, A., Fei-Fei, L.(2016). Perceptual Losses
for Real-Time Style Transfer and Super-Resolution
Kaufman, J.C., Beghetto, R.A.(2009). Beyond big and
little: The four c model of creativity. Review of general
psychology 13, 1–12
Kusner, M.J., Paige, B., Hernández-Lobato, J. M. (2017).
Grammar Variational Autoencoder
Lehman, J., Risi, S., Clune, J. (2016). Creative Generation
of 3D Objects with Deep Learning and Innovation
Engines. In: ICCC, pp. 180–187. Sony CSL Paris,
France
Ley, M. (2009). DBLP - Some Lessons Learned. PVLDB
2, 1493–1500
Maddy Shaw Roberts (2019). Beethoven’s unfinished tenth
symphony to be completed by artificial intelligence.
Classic FM
Marcus, G. (2018). Deep learning: A critical appraisal.
arXiv preprint arXiv:1801.00631
Mathewson, K.W., Mirowski, P. (2017). Improvised theatre
alongside artificial intelligences. Thirteenth Artificial
Intelligence and Interactive Digital Entertainment
Conference
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M.G., Graves, A., Riedmiller,
M., Fidjeland, A.K., Ostrovski, G. (2015). Human-level
control through deep reinforcement learning. Nature
518, 529
Mordvintsev, A., Olah, C. and Tyka, M.(.htm).
Inceptionism: Going Deeper into Neural Networks,
https://ai.googleblog.com/2015/06/inceptionism-
going-deeper-into-neur
Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.
(2017). Molecular de-novo design through deep
reinforcement learning. J. Cheminformatics 9, 48:1‐
48:14
Polykovskiy, D., Zhebrak, A., Vetrov, D., Ivanenkov, Y.,
Aladinskiy, V., Mamoshina, P., Bozdaganyan, M.,
Aliper, A., Zhavoronkov, A., Kadurin, A. (2018).
Entangled Conditional Adversarial Autoencoder for de
Novo Drug Discovery. Molecular pharmaceutics 15,
4398–4405
Potash, P., Romanov, A., Rumshisky, A. (2015).
GhostWriter: Using an LSTM for Automatic Rap Lyric
Generation. In: Màrquez, L., Callison-Burch, C., Su, J.
(eds.) Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pp. 1919–1924. Association for Computational
Linguistics, Stroudsburg, PA, USA
Radhakrishnan, S., Bharadwaj, V., Manjunath, V., Srinath,
R. (2018). Creative Intelligence - Automating Car
Design Studio with Generative Adversarial Networks
(GAN). In: CD-MAKE, 11015, pp. 160–175. Springer
Sbai, O., Elhoseiny, M., Bordes, A., LeCun, Y., Couprie, C.
(2018). Design: Design inspiration from generative
networks. In: Proceedings of the European Conference
on Computer Vision (ECCV)
Schneider, J. (2020). Human-to-AI coach: Improving
human inputs to AI systems. In International
symposium on intelligent data analysis (pp. 431-443).