operating in crowded urban environments. In 2013
IEEE ICRA, pages 3225–3232. IEEE.
Lamon, P., Kolski, S., and Siegwart, R. (2006). The
smartter-a vehicle for fully autonomous navigation
and mapping in outdoor environments. In Proceed-
ings of CLAWAR.
Lee, D.-Y. D.-Y., Thomas, V., and Brown, M. (2013). Elec-
tric urban delivery trucks: Energy use, greenhouse gas
emissions, and cost-effectiveness. Environmental sci-
ence & technology, 47.
Lewis (2016). Object detection for autonomous vehicles
gene.
Lin, J., Wang, W.-J., Huang, S.-K., and Chen, H.-C. (2017).
Learning based semantic segmentation for robot nav-
igation in outdoor environment. In 2017 Joint 17th
World Congress of IFSA and 9th SCIS (IFSA-SCIS),
pages 1–5.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2018). Focal loss for dense object detection.
Lindeberg, T. (2012). Scale Invariant Feature Transform.
Scholarpedia, 7(5):10491. revision #153939.
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X.,
and Kim, T.-K. (2017). Multiple object tracking: A
literature review.
Marshall, A. (2017). The us postal service is building a
self-driving mail truck. https://www.wired.com/story/
postal-service-office-self-driving-mail-trucks/.
Mehta, S., Rastegari, M., Shapiro, L., and Hajishirzi, H.
(2019). Espnetv2: A light-weight, power efficient,
and general purpose convolutional neural network. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9190–
9200.
Miller, D. P. and Gat, E. (1991). Exploiting known topolo-
gies to navigate with low-computation sensing. In
Sensor Fusion III: 3D Perception and Recognition,
volume 1383, pages 425–435. International Society
for Optics and Photonics.
Nascimento, J., Abrantes, A., and Marques, J. (1999). An
algorithm for centroid-based tracking of moving ob-
jects. In 1999 IEEE ICASSP99 (Cat. No.99CH36258),
volume 6, pages 3305–3308 vol.6.
opencv dev team (2014). Camera Calibration and 3D Re-
construction. OpenCV, 2.4.13.7 edition.
opencv dev team (2021). Template Matching. OpenCV,
4.5.2 edition.
Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E.
(2016). Enet: A deep neural network architecture
for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147.
Patel, S. (2019). Pothole image data-set. https://www.
kaggle.com/sachinpatel21/pothole-image-dataset.
Pereira, G., Pimenta, L., Chaimowicz, L., Fonseca, A.,
Almeida, D., Corr
ˆ
ea, L., Mesquita, R., and Campos,
M. (2006). Robot navigation in multi-terrain outdoor
environments. volume 28, pages 331–342.
Pirsiavash, H., Ramanan, D., and Fowlkes, C. C. (2011).
Globally-optimal greedy algorithms for tracking a
variable number of objects. In CVPR 2011, pages
1201–1208.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet:
Deep learning on point sets for 3d classification and
segmentation.
Qiu, Z., Yan, F., Zhuang, Y., and Leung, H. (2019). Out-
door semantic segmentation for ugvs based on cnn
and fully connected crfs. IEEE Sensors Journal,
19(11):4290–4298.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection.
Ren, R., Fu, H., and Wu, M. (2019). Large-scale outdoor
slam based on 2d lidar. Electronics, 8(6):613.
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster
r-cnn: Towards real-time object detection with region
proposal networks.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: an efficient alternative to sift or surf.
pages 2564–2571.
Simonyan, K. and Zisserman, A. (2015). Very deep convo-
lutional networks for large-scale image recognition.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2014). Going deeper with convolutions.
Tan, M. and Le, Q. V. (2020). Efficientnet: Rethinking
model scaling for convolutional neural networks.
Tareen, S. A. K. and Saleem, Z. (2018). A comparative anal-
ysis of sift, surf, kaze, akaze, orb, and brisk. In 2018
International Conference on Computing, Mathemat-
ics and Engineering Technologies (iCoMET), pages
1–10.
Uc¸ar, A., demir, Y., and G
¨
uzelis¸, C. (2017a). Ob-
ject recognition and detection with deep learning
for autonomous driving applications. SIMULATION,
93:003754971770993.
Uc¸ar, A., demir, Y., and G
¨
uzelis¸, C. (2017b). Ob-
ject recognition and detection with deep learning
for autonomous driving applications. SIMULATION,
93:003754971770993.
Veit, A., Matera, T., Neumann, L., Matas, J., and Belongie,
S. (2016). Coco-text: Dataset and benchmark for text
detection and recognition in natural images.
Vitali, E., Gadioli, D., Palermo, G., Golasowski, M., Bispo,
J., Pinto, P., Martinovic, J., Slaninova, K., Cardoso,
J., and Silvano, C. (2019). An efficient monte carlo-
based probabilistic time-dependent routing calcula-
tion targeting a server-side car navigation system.
IEEE transactions on emerging topics in computing.
Wang, L., Shi, J., Song, G., and Shen, I.-f. (2007). Ob-
ject detection combining recognition and segmenta-
tion. pages 189–199.
Wang, X., Mizukami, Y., Tada, M., and Matsuno, F. (2021).
Navigation of a mobile robot in a dynamic environ-
ment using a point cloud map. Artificial Life and
Robotics, 26(1):10–20.
Yahja, A., Singh, S., and Stentz, A. (2000). Efficient on-line
path planner for outdoor mobile robots. Robotics and
Autonomous Systems, 32.
Yi, C. and Choi, B.-U. (2011). Detection and recovery for
kidnapped-robot problem using measurement entropy.
volume 261, pages 293–299.
ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence
138