with Artificial Intelligence, ICTAI 2018, 5-7 Novem-
ber 2018, Volos, Greece, pages 307–314. IEEE.
Ahmed, S. and Mouhoub, M. (2019). Lexicographic pref-
erence trees with hard constraints. In Meurs, M.
and Rudzicz, F., editors, Advances in Artificial Intelli-
gence - 32nd Canadian Conference on Artificial Intel-
ligence, Canadian AI 2019, Kingston, ON, Canada,
May 28-31, 2019, Proceedings, volume 11489 of
Lecture Notes in Computer Science, pages 366–372.
Springer.
Ahmed, S. and Mouhoub, M. (2020). Conditional prefer-
ence networks with user’s genuine decisions. Comput.
Intell., 36(3):1414–1442.
Alanazi, E. and Mouhoub, M. (2016). Variable ordering and
constraint propagation for constrained cp-nets. Ap-
plied Intelligence, 44(2):437–448.
Alanazi, E., Mouhoub, M., and Zilles, S. (2020). The com-
plexity of exact learning of acyclic conditional pref-
erence networks from swap examples. Artif. Intell.,
278.
Balke, W.-T. and Wagner, M. (2003). Towards personalized
selection of web services. In WWW (Alternate Paper
Tracks), pages 20–24.
Bonnefon, J.-F., Shariff, A., and Rahwan, I. (2016). The
social dilemma of autonomous vehicles. Science,
352(6293):1573–1576.
Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H.,
and Poole, D. (2004a). Cp-nets: A tool for repre-
senting and reasoning withconditional ceteris paribus
preference statements. Journal of artificial intelli-
gence research, 21:135–191.
Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H.,
and Poole, D. (2004b). Preference-based constrained
optimization with cp-nets. Computational Intelli-
gence, 20(2):137–157.
Dalla Pozza, G., Pini, M. S., Rossi, F., and Venable, K. B.
(2011). Multi-agent soft constraint aggregation via se-
quential voting. In Twenty-Second International Joint
Conference on Artificial Intelligence.
Domshlak, C., H
¨
ullermeier, E., Kaci, S., and Prade, H.
(2011). Preferences in ai: An overview, artifical in-
telligence, 175 (7-8).
Goldsmith, J. and Junker, U. (2008). Preference handling
for artificial intelligence. AI Magazine, 29(4):9–9.
Gonzales, C. and Perny, P. (2004). Gai networks for utility
elicitation. KR’04, page 224–233. AAAI Press.
Lang, J. (2010). Graphical representation of ordinal pref-
erences: Languages and applications. In Interna-
tional Conference on Conceptual Structures, pages 3–
9. Springer.
Li, M. and Kazimipour, B. (2018). An efficient algorithm
to compute distance between lexicographic preference
trees. In IJCAI, pages 1898–1904.
Loreggia, A., Mattei, N., Rossi, F., and Venable, K. B.
(2018a). 18 value alignment via tractable preference
distance.
Loreggia, A., Mattei, N., Rossi, F., and Venable, K. B.
(2018b). A notion of distance between cp-nets. In
Proc. of AAMAS, pages 955–963.
Mohammed, B., Mouhoub, M., and Alanazi, E. (2015).
Combining constrained cp-nets and quantitative pref-
erences for online shopping. In International Confer-
ence on Industrial, Engineering and Other Applica-
tions of Applied Intelligent Systems, pages 702–711.
Springer.
Mouhoub, M. and Liu, J. (2008). Managing uncertain tem-
poral relations using a probabilistic interval algebra.
In 2008 IEEE International Conference on Systems,
Man and Cybernetics, pages 3399–3404.
Mouhoub, M. and Sukpan, A. (2008). Managing tempo-
ral constraints with preferences. Spatial Cognition &
Computation, 8(1-2):131–149.
Moussa, A. S. (2019). On learning and visualizing lexico-
graphic preference trees. University of North Florida.
Racharak, T., Suntisrivaraporn, B., and Tojo, S. (2016).
simπ: A concept similarity measure under an agent’s
preferences in description logic elh. In Proceedings
of the 8th International Conference on Agents and Ar-
tificial Intelligence - Volume 2: ICAART,, pages 480–
487. INSTICC, SciTePress.
Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction
to recommender systems handbook. In Recommender
systems handbook, pages 1–35. Springer.
Rossi, F., Venable, K. B., and Walsh, T. (2004). mcp nets:
Representing and reasoning with preferences of mul-
tiple agents. In AAAI, volume 4, pages 729–734.
Wang, H., Wang, H., Guo, G., Tang, Y., and Zhang, J.
(2017). Measuring similarity of users with qualita-
tive preferences for service selection. Knowledge and
Information Systems, 51(2):561–594.
Xu, K. and Li, W. (2000). Exact phase transitions in random
constraint satisfaction problems. Journal of Artificial
Intelligence Research, 12:93–103.
Yager, R. (2001). Penalizing strategic preference manipu-
lation in multi-agent decision making. IEEE Transac-
tions on Fuzzy Systems, 9(3):393–403.
Zhang, S., Mouhoub, M., and Sadaoui, S. (2015). Integrat-
ing tcp-nets and csps: The constrained tcp-net (ctcp-
net) model. In 28th International Conference on In-
dustrial, Engineering and Other Applications of Ap-
plied Intelligent Systems, IEA/AIE 2015, Seoul, South
Korea, June 10-12, 2015, Proceedings, volume 9101
of Lecture Notes in Computer Science, pages 201–
211. Springer.
Constrained CP-nets Similarity
233