mean. https://www.neuralegion.com/fuzzing-what-
is-fuzzer/.
Brook, C. (2018). What is deep packet inspection?
how it works, use cases for dpi, and more.
https://digitalguardian.com/blog/what-deep-packet-
inspection-how-it-works-use-cases-dpi-and-more.
Caballero, J., Yin, H., Liang, Z., and Song, D. (2007). Poly-
glot: Automatic extraction of protocol message format
using dynamic binary analysis. In Proceedings of the
14th ACM conference on Computer and communica-
tions security, pages 317–329.
Comparetti, P. M., Wondracek, G., Kruegel, C., and Kirda,
E. (2009). Prospex: Protocol specification extraction.
In 2009 30th IEEE Symposium on Security and Pri-
vacy, pages 110–125. IEEE.
Cui, W., Kannan, J., and Wang, H. J. (2007). Discoverer:
Automatic protocol reverse engineering from network
traces. In USENIX Security Symposium, pages 1–14.
Duchene, J., Le Guernic, C., Alata, E., Nicomette, V., and
Ka
ˆ
aniche, M. (2018). State of the art of network pro-
tocol reverse engineering tools. Journal of Computer
Virology and Hacking Techniques, 14(1):53–68.
Fan, R. and Chang, Y. (2017). Machine learning for black-
box fuzzing of network protocols. In International
Conference on Information and Communications Se-
curity, pages 621–632. Springer.
Garfinkel, S. (2008). Nitroba university harassment sce-
nario. Dataset: https://digitalcorpora.org/corpora/
scenarios/nitroba-university-harassment-scenario.
Godefroid, P., Peleg, H., and Singh, R. (2017). Learn&fuzz:
Machine learning for input fuzzing. In 2017 32nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 50–59. IEEE.
Goo, Y.-H., Shim, K.-S., Lee, M.-S., and Kim, M.-S.
(2019). Http and dns traffic traces for experiment-
ing of protocol reverse engineering methods. http:
//dx.doi.org/10.21227/tpqf-fe98.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.
Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the
dimensionality of data with neural networks. Science,
313:504 – 507.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Hornik, K., Stinchcombe, M., White, H., et al. (1989). Mul-
tilayer feedforward networks are universal approxi-
mators. Neural networks, 2(5):359–366.
Hu, Z., Shi, J., Huang, Y., Xiong, J., and Bu, X. (2018).
Ganfuzz: a gan-based industrial network protocol
fuzzing framework. In Proceedings of the 15th ACM
International Conference on Computing Frontiers,
pages 138–145.
Jung, Y. and Jeong, C.-M. (2020). Deep neural network-
based automatic unknown protocol classification sys-
tem using histogram feature. The Journal of Super-
computing, 76(7):5425–5441.
Kohonen, T. (1982). Self-organized formation of topolog-
ically correct feature maps. Biological cybernetics,
43(1):59–69.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc.
Lang, K. J. (1999). Faster algorithms for finding minimal
consistent dfas. NEC Research Institute, Tech. Rep.
Li, R., Xiao, X., Ni, S., Zheng, H., and Xia, S. (2018). Byte
segment neural network for network traffic classifica-
tion. In 2018 IEEE/ACM 26th International Sympo-
sium on Quality of Service (IWQoS), pages 1–10.
Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., and
Lloret, J. (2017). Network traffic classifier with con-
volutional and recurrent neural networks for internet
of things. IEEE Access, 5:18042–18050.
Michael, A., Valla, E., Neggatu, N. S., and Moore, A.
(2017). Network traffic classification via neural net-
works. Technical Report UCAM-CL-TR-912, Univer-
sity of Cambridge, Computer Laboratory.
Narayan, J., Shukla, S. K., and Clancy, T. C. (2015). A sur-
vey of automatic protocol reverse engineering tools.
ACM Computing Surveys (CSUR), 48(3):1–26.
Pang, R. and Paxson, V. (2003). Lawrence Berkeley Na-
tional Laboratory - FTP - Packet Trace. Dataset:
https://ee.lbl.gov/anonymized-traces.html.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626.
Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani,
A. A. (2019). Developing realistic distributed denial
of service (ddos) attack dataset and taxonomy. In 2019
International Carnahan Conference on Security Tech-
nology (ICCST), pages 1–8. IEEE.
Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani, A. A.
(2012). Toward developing a systematic approach to
generate benchmark datasets for intrusion detection.
computers & security, 31(3):357–374.
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.
TC97, I. (1984). Basic reference model. International Stan-
dard, ISO/IS, 7498.
Wondracek, G., Comparetti, P. M., Kruegel, C., and Kirda,
E. (2008). Automatic network protocol analysis. In
NDSS, volume 8, pages 1–14.
Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan:
Sequence generative adversarial nets with policy gra-
dient. In Thirty-first AAAI conference on artificial in-
telligence.
ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy
356