Caselton, W. F. and Zidek, J. V. (1984). Optimal monitor-
ing network designs. Statistics & Probability Letters,
2(4):223–227.
Chandler-Wilde, S. and Hothersall, D. (1985). Sound prop-
agation above an inhomogeneous impedance plane.
Journal of Sound and Vibration, 98(4):475–491.
Cressie, N. and Moores, M. T. (2021). Spatial statistics.
arXiv preprint arXiv:2105.07216.
de Hoop, A. T., Lam, C.-H., and Kooij, B. J. (2005).
Parametrization of acoustic boundary absorption and
dispersion properties in time-domain source/receiver
reflection measurement. The Journal of the Acousti-
cal Society of America, 118(2):654–660.
Federal Office of Topography (2021). Swisstopo federal
office of topography.
Gonz
´
alez-Banos, H. (2001). A randomized art-gallery al-
gorithm for sensor placement. In Proceedings of the
seventeenth annual symposium on Computational ge-
ometry - SCG '01. ACM Press.
Guillaume, G., Aumond, P., Gauvreau, B., and Dutilleux,
G. (2014). Application of the transmission line ma-
trix method for outdoor sound propagation modelling
– part 1: Model presentation and evaluation. Applied
Acoustics, 76:113–118.
ISO 9613-2:1996(F) (1996). Acoustique - att
´
enatuation du
son lors de sa propagation
`
a l’air libre - partie 2 :
M
´
ethode g
´
en
´
erale de calcul. Standard, International
Organization for Standardization, Geneva, CH.
Jakubcov
´
a, M., M
´
aca, P., and Pech, P. (2014). A comparison
of selected modifications of the particle swarm opti-
mization algorithm. Journal of Applied Mathematics,
2014.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages
1942–1948. IEEE.
Krause, A., Singh, A., and Guestrin, C. (2008). Near-
optimal sensor placements in gaussian processes:
Theory, efficient algorithms and empirical studies.
Journal of Machine Learning Research, 9(8):235–
284.
Kulkarni, R. V. and Venayagamoorthy, G. K. (2010). Par-
ticle swarm optimization in wireless-sensor networks:
A brief survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
41(2):262–267.
Lam, Y. W. and Monazzam, M. R. (2006). On the mod-
eling of sound propagation over multi-impedance dis-
continuities using a semiempirical diffraction formu-
lation. The Journal of the Acoustical Society of Amer-
ica, 120(2):686–698.
Pal, P., Sharma, R. P., Tripathi, S., Kumar, C., and Ramesh,
D. (2021). Genetic algorithm optimized node deploy-
ment in ieee 802.15. 4 potato and wheat crop monitor-
ing infrastructure. Scientific Reports, 11(1):1–12.
Pi
˜
na-Covarrubias, E., Hill, A. P., Prince, P., Snaddon, J. L.,
Rogers, A., and Doncaster, C. P. (2019). Optimization
of sensor deployment for acoustic detection and local-
ization in terrestrial environments. Remote Sensing in
Ecology and Conservation, 5(2):180–192.
Premat, E. and Gabillet, Y. (2000). A new boundary-
element method for predicting outdoor sound propa-
gation and application to the case of a sound barrier in
the presence of downward refraction. The Journal of
the Acoustical Society of America, 108(6):2775–2783.
Ramakrishnan, N., Bailey-Kellogg, C., Tadepalli, S., and
Pandey, V. N. (2005). Gaussian Processes for Active
Data Mining of Spatial Aggregates, pages 427–438.
Raspet, R., Lee, S. W., Kuester, E., Chang, D. C., Richards,
W. F., Gilbert, R., and Bong, N. (1985). A fast-
field program for sound propagation in a layered at-
mosphere above an impedance ground. The Journal
of the Acoustical Society of America, 77(2):345–352.
tisimst (2015). Particle swarm optimization (pso) with con-
straint support.
Whitley, D. (1994). A genetic algorithm tutorial. Statistics
and computing, 4(2):65–85.
Yang, X. (2008). Introduction to mathematical optimiza-
tion. From linear programming to metaheuristics.
Younis, M. and Akkaya, K. (2008). Strategies and tech-
niques for node placement in wireless sensor net-
works: A survey. Ad Hoc Networks, 6(4):621–655.
ZainEldin, H., Badawy, M., Elhosseini, M., Arafat, H., and
Abraham, A. (2020). An improved dynamic deploy-
ment technique based-on genetic algorithm (iddt-ga)
for maximizing coverage in wireless sensor networks.
Journal of Ambient Intelligence and Humanized Com-
puting, pages 1–18.
Optimization of Sensor Placement for Birds Acoustic Detection in Complex Fields
559