REFERENCES
Adami, N., Benini, S., Boschetti, A., Canini, L., Maione, F.,
Temporin, M. (2013). Markers of unsustainable gaming
for early detection of at-risk online gamblers.
International Gambling Studies. 13, 188-204.
Barbieri, M., Berger, J. (2004). Optimal predictive model
selection. Annals of Statistics. 32(3), 870-897.
Braverman, J., Shaffer, H. (2010). How do gamblers start
gambling: identifying behavioural markers for high-
risk internet gambling. European Journal of Public
Health. 22, 273-278.
Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, P. (2002).
SMOTE: Synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research, 16, 321-
357.
Courville, A., Goodfellow, I., Bengio, Y. (2015). Deep
Learning, The MIT Press. London, 2
nd
edition.
Gevrey, M., Dimopoulos, I., Lek, S. (2003). Review and
comparison of methods to study the contribution of
variables in artificial neural network models.
Ecological Modelling. 160(30), 249-264.
Griffiths, M. (2003). Internet gampling: issues, concerns,
and recommendations. Cyber Psychology and
Behaviour. 6(6), 557-568.
Griffiths, M., Wardle, H., Orford, J., Spreston, K., Erems,
B. (2009). Sociodemographic correlates of internet
gambling: Findings from the 2007 British ambling
prevalence survey. Cyber Psychology and Behaviour.
12(2), 199-202.
Hayer, T., Meyer, G. (2010). Self-exclusion as a harm
minimization strategy: evidence for the casino sector
from selected European countries. Journal of Gambling
Studies. 27(4), 685-700.
Hubert, P., Griffiths, M. (2018). A comparison of online
versus offline gambling harm in Portuguese
pathological gamblers: An empirical study.
International Journal of Mental Health Addiction. 16,
1219-1237.
Jia, B., Liang F., Gentleman, R., Ihaka, R., The R Core
Team. (2018). Package ‘BNN’ (Version 1.0.2). CRAN
R-Project.
Kelley, C. T. (1999). Iterative Methods for Optimization.
Frontiers in Applied Mathematics, 18, 71-86.
Lemaître, G., Nogueira, F., Aridas, C. K. (2017).
Imbalanced-learn: a python toolbox to tackle the curse
of imbalanced datasets in machine learning. The
Journal of Machine Learning Research. 18(1), 559–
563.
Liang, F., Li, Q., Zhou, L. (2018). Bayesian neural
networks for selection of drug sensitive genes. Journal
of the American Statistical Association. 113(523), 955-
972.
McCormack, A., Griffiths, M. D. (2012). Motivating and
inhibiting factors in online gambling behavior: A
grounded theory study. International Journal of Mental
Health and Addiction. 10, 39-53.
Percy, C., Franca, M., Dragicevic, S., Garcez, A. (2016).
Predicting online gambling self-exclusion: An analysis
of the performance of supervised machine learning
methods. International Gambling Studies. 16(2), 1-18.
Peller, A., Laplante, D., Shaffer, H. (2008). Parameters for
safer gambling behaviour: examining the empirical
research. Journal of Gambling Studies. 24, 519-534.
Ripley, B., Venables, W. (2021). Package ‘nnet’ (Version
7.3-16). CRAN R-Project.
Philander, K. (2013). Identifying high-risk online gamblers:
a comparison of data mining procedures. International
Gambling Studies. 14(1), 53-63.
Shanker, M., Hu, M. Y., & Hung, M. S. (1996). Effect of
data standardization on neural network training.
Omega, 24, issue 4, 385–397.
Sharaf, T., Williams, T., Chehade, A., Pokhrel, K. (2020).
BLNN: An R package for training neural networks
using Bayesian inference. SoftwareX. 11, 100432.
Ukhov, I., Bjurgert,, J., Auer, M., Griffiths, M. (2020).
Online problem gambling: a comparison of casino
players and sports bettors via predictive modelling
using behavioral tracking data. Journal of Gambling
Studies. 37, 887-897.