Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. In Bengio, Y. and LeCun, Y., editors, 1st In-
ternational Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–
3119.
Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). Linguistic
regularities in continuous space word representations.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association For Computa-
tional Linguistics: Human Language Technologies,
pages 746–751.
Min, S., Park, S., Kim, S., Choi, H.-S., and Yoon, S. (2019).
Pre-training of deep bidirectional protein sequence rep-
resentations with structural information. Neural In-
formation Processing Systems, Workshop on Learning
Meaningful Representations of Life.
Minar, M. R. and Naher, J. (2018). Recent advances
in deep learning: An overview. arXiv preprint
arXiv:1807.08169.
Moon, S. and Hwang, J.-N. (1997). Robust speech recogni-
tion based on joint model and feature space optimiza-
tion of hidden Markov models. IEEE Transactions on
Neural Networks, 8(2):194–204.
Paul, S., Singh, L., et al. (2015). A review on advances in
deep learning. In 2015 IEEE Workshop on Computa-
tional Intelligence: Theories, Applications and Future
Directions (WCI), pages 1–6. IEEE.
Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1532–1543.
Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deep-
walk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 701–710. ACM.
Qiao, M., Bian, W., Da Xu, R. Y., and Tao, D. (2015). Diver-
sified hidden Markov models for sequential labeling.
IEEE Transactions on Knowledge and Data Engineer-
ing, 27(11):2947–2960.
Rabiner, L. R. (1989). A tutorial on hidden Markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257–286.
Rabiner, L. R. and Juang, B.-H. (1986). An introduction to
hidden Markov models. IEEE ASSP Magazine, 3(1):4–
16.
Rybert Sipos, I. (2016). Parallel stratified MCMC sampling
of AR-HMMs for stochastic time series prediction. In
Proceedings of the 4th Stochastic Modeling Techniques
and Data Analysis International Conference with De-
mographics Workshop (SMTDA 2016). Valletta, Malta:
University of Malta, pages 361–364.
Saltzer, J. H. and Schroeder, M. D. (1975). The protection
of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308.
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural Networks, 61:85–117.
Sharan, V., Kakade, S., Liang, P., and Valiant, G. (2018).
Prediction with a short memory. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1074–1087. ACM.
Smith, L., Rindflesch, T., and Wilbur, W. J. (2004). MedPost:
a part-of-speech tagger for bioMedical text. Bioinfor-
matics, 20(14):2320–2321.
Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier,
T., and Maida, A. (2019). Deep learning in spiking
neural networks. Neural Networks, 111:47–63.
Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya,
C. G., and van Moorsel, A. (2020). The relationship
between trust in AI and trustworthy machine learning
technologies. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, pages
272–283.
Tran, K. M., Bisk, Y., Vaswani, A., Marcu, D., and Knight, K.
(2016). Unsupervised neural hidden Markov models.
In SPNLP@EMNLP, pages 63–71.
Trentin, E. and Gori, M. (1999). Combining neural networks
and hidden Markov models for speech recognition.
Neural Nets WIRN VIETRI-98, pages 63–79.
Varga, A. and Moore, R. K. (1990). Hidden Markov model
decomposition of speech and noise. In International
Conference on Acoustics, Speech, and Signal Process-
ing, pages 845–848. IEEE.
Varshney, K. R. (2019). Trustworthy machine learning and
artificial intelligence. XRDS: Crossroads, The ACM
Magazine for Students, 25(3):26–29.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017).
Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pages 5998–6008.
Wang, B., Wang, A., Chen, F., Wang, Y., and Kuo, C.-C. J.
(2019). Evaluating word embedding models: Meth-
ods and experimental results. APSIPA transactions on
signal and information processing, 8.
Wu, C. J. (1983). On the convergence properties of the EM
algorithm. The Annals of Statistics, pages 95–103.
Wu, X., Sahoo, D., and Hoi, S. C. (2020). Recent advances
in deep learning for object detection. Neurocomputing.
Yang, F., Balakrishnan, S., and Wainwright, M. J. (2017).
Statistical and computational guarantees for the Baum-
Welch algorithm. The Journal of Machine Learning
Research, 18(1):4528–4580.
Zhang, A., Gultekin, S., and Paisley, J. (2016a). Stochastic
variational inference for the HDP-HMM. In Artificial
Intelligence and Statistics, pages 800–808.
Zhang, Y., Rahman, M. M., Braylan, A., Dang, B., Chang,
H., Kim, H., McNamara, Q., Angert, A., Banner, E.,
Khetan, V., McDonnell, T., Nguyen, A. T., Xu, D., Wal-
lace, B. C., and Lease, M. (2016b). Neural information
retrieval: A literature review. CoRR, abs/1611.06792.
Zou, Q., Xing, P., Wei, L., and Liu, B. (2019). Gene2vec:
gene subsequence embedding for prediction of mam-
malian N6-methyladenosine sites from mRNA. RNA,
25(2):205–218.
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
246