Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-
carlo planning. In European conference on machine
learning, pages 282–293. Springer.
Kowalski, J. and Miernik, R. (2020). Evolutionary Ap-
proach to Collectible Card Game Arena Deckbuilding
using Active Genes. In IEEE CEC.
Lanctot, M., Lisý, V., and Winands, M. H. M. (2014).
Monte carlo tree search in simultaneous move games
with applications to goofspiel. In Computer Games,
pages 28–43. Springer.
Liu, J., Pérez-Liébana, D., and Lucas, S. M. (2016).
Rolling Horizon Coevolutionary planning for two-
player video games. In 2016 8th Computer Science
and Electronic Engineering (CEEC), pages 174–179.
Malysheva, A., Sung, T. T., Sohn, C.-B., Kudenko, D., and
Shpilman, A. (2018). Deep multi-agent reinforce-
ment learning with relevance graphs. arXiv preprint
arXiv:1811.12557.
Millington, I. and Funge, J. (2009). Artificial Intelligence
for Games. CRC Press.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. na-
ture, 518(7540):529–533.
Montoliu, R., Gaina, R. D., Pérez-Liebana, D., Delgado,
D., and Lucas, S. (2020). Efficient heuristic policy
optimisation for a challenging strategic card game. In
EvoSTAR, pages 403–418.
Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F.,
Churchill, D., and Preuss, M. (2013). A survey of
real-time strategy game AI research and competition
in Starcraft. IEEE TCIAIG, 5(4):293–311.
Osogami, T. and Takahashi, T. (2019). Real-time tree
search with pessimistic scenarios. arXiv preprint
arXiv:1902.10870.
Peng, P., Pang, L., Yuan, Y., and Gao, C. (2018). Contin-
ual match based training in Pommerman: Technical
report. arXiv preprint:1812.07297.
Perez, D., Samothrakis, S., Lucas, S., and Rohlfshagen, P.
(2013). Rolling horizon evolution versus tree search
for navigation in single-player real-time games. In
GECCO, pages 351–358.
Perez-Liebana, D., Gaina, R. D., Drageset, O., Ilhan, E.,
Balla, M., and Lucas, S. M. (2019a). Analysis of sta-
tistical forward planning methods in pommerman. In
AIIDE, volume 15, pages 66–72.
Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R. D., To-
gelius, J., and Lucas, S. M. (2019b). General Video
Game AI: a Multi-Track Framework for Evaluating
Agents, Games and Content Generation Algorithms.
IEEE Transactions on Games, 11(3):195–214.
Rabin, S. (2013). Game AI pro: collected wisdom of game
AI professionals. CRC Press.
Resnick, C., Eldridge, W., Ha, D., Britz, D., Foerster, J.,
Togelius, J., Cho, K., and Bruna, J. (2018). Pommer-
Man: A multi-agent playground. In MARLO Work-
shop, AIIDE-WS Proceedings, pages 1–6.
Rohlfshagen, P., Liu, J., Perez-Liebana, D., and Lucas,
S. M. (2017). Pac-man conquers academia: Two
decades of research using a classic arcade game. IEEE
Transactions on Games, 10(3):233–256.
Russell, S. J. and Norvig, P. (2020). Artificial Intelligence:
A Modern Approach. Pearson Education, 4 edition.
Samothrakis, S., Roberts, S. A., Perez, D., and Lucas, S. M.
(2014). Rolling horizon methods for games with con-
tinuous states and actions. In IEEE CIG, pages 1–8.
IEEE.
Schadd, M. P. D., Winands, M. H. M., van den Herik,
H. J., Chaslot, G. M. J. B., and Uiterwijk, J. W. H. M.
(2008). Single-Player Monte-Carlo Tree Search. In
Computers and Games, pages 1–12. Springer.
Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A.,
Müller, M., Lake, R., Lu, P., and Sutphen, S. (2007).
Checkers is solved. science, 317(5844):1518–1522.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., and Hassabis, D. (2016). Mastering the game of
Go with deep neural networks and tree search. Na-
ture, 529:484–503.
´
Swiechowski, M., Godlewski, K., Sawicki, B., and Ma
´
ndz-
iuk, J. (2021). Monte Carlo Tree Search: A Re-
view on Recent Modifications and Applications. arXiv
preprint arXiv:2103.04931.
Tesauro, G. (1994). Td-gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural
computation, 6(2):215–219.
Togelius, J., Karakovskiy, S., and Baumgarten, R. (2010).
The 2009 Mario AI Competition. In IEEE CCEC,
pages 1–8. IEEE.
Vieira, R., Tavares, A. R., and Chaimowicz, L. (2020).
Drafting in collectible card games via reinforce-
ment learning. In Brazilian Symposium on Com-
puter Games and Digital Entertainment, pages 54–61.
IEEE.
Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu,
M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., et al. (2019). Grandmaster
level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354.
Zhou, H., Gong, Y., Mugrai, L., Khalifa, A., Nealen, A., and
Togelius, J. (2018). A hybrid search agent in pommer-
man. In FDG, pages 1–4.
Zhou, R. and Hansen, E. A. (2005). Beam-Stack Search: In-
tegrating Backtracking with Beam Search. In ICAPS,
pages 90–98.
ICAART 2022 - 14th International Conference on Agents and Artificial Intelligence
344