REFERENCES
Armstrong, M. (2020). The Online Coronavirus Threat.
statista.com. https://www.statista.com/chart/21286/
known-coronavirus-related-malicious-online-threats/
Chen, H., Liu, J., Lv, Y., Li, M. H., Liu, M., & Zheng, Q.
(2018). Semi-supervised clue fusion for spammer
detection in Sina Weibo. Information Fusion, 44, 22-32.
10.1016/j.inffus.2017.11.002
Chromium. (2021). ChromeDriver - WebDriver for
Chrome. https://chromedriver.chromium.org/
Fakhraei, S., Foulds, J., Shashanka, M., & Getoor, L.
(2015). Collective Spammer Detection in Evolving
Multi-Relational Social Networks. Paper presented at
the 1769-1778. 10.1145/2783258.2788606 http://
dl.acm.org/citation.cfm?id=2788606
Frenkel, S. (2018). Facebook Says It Deleted 865 Million
Posts, Mostly Spam. New York Times (Online) https://
search.proquest.com/docview/2038688931
Guan, S., & Zhu, F. (2005). An incremental approach to
genetic-algorithms-based classification. IEEE
Transactions on Systems, Man and Cybernetics. Part B,
Cybernetics, 35(2), 227-239. 10.1109/
TSMCB.2004.842247
Imam, N., Issac, B., & Jacob, S. M. (2019). A Semi-
Supervised Learning Approach for Tackling Twitter
Spam Drift. International Journal of Computational
Intelligence and Applications, 18(2), 1950010.
10.1142/S146902681950010X
Kho, J. B., Lee, W., Choi, H., & Kim, J. (2019). An
incremental learning method for spoof fingerprint
detection. Expert Systems with Applications, 116, 52-64.
10.1016/j.eswa.2018.08.055
Kimbro, L., Bicking, I., & Wick, L. (2019). Using Pickle,
https://wiki.python.org/moin/UsingPickle
Li, M., Wang, Y., & Cai, L. (2010). Incremental feature
selection algorithm for data stream classification.
Journal of Computer Applications, 30(9), 2321-2323.
10.3724/SP.J.1087.2010.02321
Luo, Y., Yin, L., Bai, W., & Mao, K. (2020). An Appraisal
of Incremental Learning Methods. Entropy (Basel,
Switzerland), 22(11), 1190. 10.3390/e22111190
Mottl, D. (2019). GetOldTweets3. https://pypi.org/project/
GetOldTweets3/
Newberg, M. (2017). As Many as 48 Million Twitter
Accounts Aren't People, Says Study. https://
www.cnbc.com/2017/03/10/nearly-48-million-twitter-
accounts-could-be-bots-says-study.html
NLTK Team (2021). Natural Language Toolkit. https://
www.nltk.org/#natural-language-toolkit
Peris, Á, & Casacuberta, F. (2019). Online learning for
effort reduction in interactive neural machine
translation. Computer Speech & Language, 58, 98-126.
10.1016/j.csl.2019.04.001
Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001).
Learn++: an incremental learning algorithm for
supervised neural networks. IEEE Transactions on
Systems, Man and Cybernetics. Part C, Applications
and Reviews, 31(4), 497-508. 10.1109/5326.983933
Ramos, J. (2003). Using TF-IDF to Determine Word
Relevance in Document Queries.
Roesslein, J. (2021). Tweepy. https://docs.tweepy.org/en/
latest/
Sanghani, G., & Kotecha, K. (2019). Incremental
personalized E-mail spam filter using novel TFDCR
feature selection with dynamic feature update. Expert
Systems with Applications, 115, 287-299. 10.1016/
j.eswa.2018.07.049
Sedhai, S., & Sun, A. (2017). Semi-Supervised Spam
Detection in Twitter Stream. IEEE Transactions on
Computational Social Systems, 5(1), 169-175. 10.1109/
TCSS.2017.2773581
Sheu, J., Chu, K., Li, N., & Lee, C. (2017). An efficient
incremental learning mechanism for tracking concept
drift in spam filtering. PloS One, 12(2), e0171518.
10.1371/journal.pone.0171518
Stewart, S. Selenium automates browsers. That's it! ,
https://www.selenium.dev/
UP2. (2015). Collecting Facebook Data with Netvizz. http://
www.up2.fr/index.php?n=Main.Netvizz
Wang, D., Irani, D., & Pu, C. (2011). A social-spam
detection framework. Paper presented at the 46-54.
10.1145/2030376.2030382 http://dl.acm.org/
citation.cfm?id=2030382
Whissell, J., & Clarke, C. (2011). Clustering for semi-
supervised spam filtering. Paper presented at the 125-
134. 10.1145/2030376.2030391 http://dl.acm.org/
citation.cfm?id=2030391
Xu, H., Sun, W., & Javaid, A. (2016). Efficient spam
detection across Online Social Networks. Paper
presented at the 2016 IEEE International Conference
on Big Data Analysis (ICBDA), 1-6. https://doi.org/
10.1109/ICBDA.2016.7509829 https://
ieeexplore.ieee.org/document/7509829
Yang, L., Yang, S., Li, S., Liu, Z., & Jiao, L. (2017).
Incremental laplacian regularization extreme learning
machine for online learning. Applied Soft Computing,
59, 546-555. 10.1016/j.asoc.2017.05.051