to the surviving vertex. The position of the surviving
vertex forms a pattern that corresponds to the knight’s
move in chess. This repetition ensures that the con-
nected components are independent and upon con-
traction, it results in a rotated version of the grid like
structure as shown in Fig.15. The grammar can be
reused on higher levels until the grid structure exists.
Computation of redundant edges, double edges in our
case as shown in Fig.15 can be pre-computed without
an expensive search.
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
6 6
6
6
6
6
6
6
6
6
6
6
6
6
6 6
6
Figure 14: Knight’s vertex contraction kernel for 9 × 9
plateau region.
Figure 15: After contraction of Knight’s vertex contraction
kernel for 9 × 9 plateau region..
Similar to the graph edit distance, we can com-
pute the pyramid edit distance for an irregular image
pyramid, based on the cost of the contraction kernel
at each level.
REFERENCES
Batavia, D., Gonz
´
alez-D
´
ıaz, R., and Kropatsch, W. G.
(2020). Image = structure + few colors. In Struc-
tural, Syntactic, and Statistical Pattern Recognition
- Joint IAPR Int. Workshops, S+SSPR, LNCS, pages
365–375. Springer.
Batavia, D., Hlad
˚
uvka, J., and Kropatsch, W. G. (2019).
Partitioning 2D Images into Prototypes of Slope Re-
gion. In Int. Conference on Computer Analysis of Im-
ages and Patterns, LNCS, pages 363–374. Springer.
Brun, L. and Kropatsch, W. (2001). Introduction to com-
binatorial pyramids. In Digital and image geometry,
pages 108–128. Springer.
Cerman, M., Janusch, I., Gonzalez-Diaz, R., and Kropatsch,
W. G. (2016). Topology-based image segmentation
using LBP pyramids. Machine Vision and Applica-
tions, 27(8):1161–1174.
Comic, L., De Floriani, L., and Iuricich, F. (2010). Build-
ing Morphological Representations for 2D and 3D
Scalar Fields. In Puppo, E., Brogni, A., and Floriani,
L. D., editors, Eurographics Italian Chapter Confer-
ence 2010, pages 103–110.
Edelsbrunner, H., Harer, J., and Zomorodian, A. (2003). Hi-
erarchical morse-smale complexes for piecewise lin-
ear 2-manifolds. Discrete and computational Geome-
try, 30(1):87–107.
Gonzalez-Diaz, R., Batavia, D., Casablanca, R. M., and
Kropatsch, W. G. (2021). Characterizing slope re-
gions. Journal of Combinatorial Optimization, pages
1–20.
Grana, C., Bolelli, F., Baraldi, L., and Vezzani, R. (2016).
YACCLAB - Yet Another Connected Components La-
beling Benchmark. In 23rd International Conference
on Pattern Recognition. ICPR.
Gyulassy, A., G
¨
unther, D., Levine, J. A., Tierny, J., and
Pascucci, V. (2014). Conforming Morse-Smale Com-
plexes. IEEE Transactions on Visualization and Com-
puter Graphics, 20(12):2595–2603.
Helman, J. L. and Hesselink, L. (1991). Visualizing vector
field topology in fluid flows. IEEE CGA, 11(3):36–46.
Kropatsch, W. G., Casablanca, R. M., Batavia, D., and
Gonzalez-Diaz, R. (2019). On the space between crit-
ical points. In Int. Conference on Discrete Geom-
etry for Computer Imagery, LNCS, pages 115–126.
Springer.
Latecki, L., Eckhardt, U., and Rosenfeld, A. (1995). Well-
composed sets. Comput. Vis. Image Underst., 61:70–
83.
Lee, R. N. (1984). Two-dimensional critical point configu-
ration graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence, (4):442–450.
Malmberg, G., Nilsson, L.-G., and Weinehall, L. (2010).
Longitudinal data for interdisciplinary ageing re-
search. design of the linnaeus database. Scandinavian
journal of public health, 38(7):761–767.
Morales-Gonz
´
alez, A. and Garc
´
ıa-Reyes, E. B. (2013).
Simple object recognition based on spatial relations
and visual features represented using irregular pyra-
mids. Multimedia tools and applications, 63(3):875–
897.
Shinagawa, Y., Kunii, T., and Kergosien, Y. (1991). Sur-
face coding based on morse theory. IEEE Computer
Graphics and Applications, 11(5):66–78.
Stein, E., Milnor, J. W., Spivak, M., Wells, R., Wells, R.,
and Mather, J. N. (1963). Morse Theory. Princeton
University Press.
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
70