Clemente, F. M., Martins, F. M. L., and Mendes, R. S.
(2016). Social Network Analysis Applied to Team
Sports Analysis. SpringerBriefs in Applied Sciences
and Technology. Springer International Publishing,
Cham.
Decroos, T., Bransen, L., Haaren, J. V., and Davis, J. (2019).
Actions Speak Louder than Goals: Valuing Player Ac-
tions in Soccer. 11.
Decroos, T., Bransen, L., Van Haaren, J., and Davis,
J. (2018a). Actions speak louder than goals:
Valuing player actions in soccer. arXiv preprint
arXiv:1802.07127.
Decroos, T., Van Haaren, J., and Davis, J. (2018b). Au-
tomatic discovery of tactics in spatio-temporal soccer
match data. In Proceedings of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, pages 223–232. Association for Com-
puting Machinery.
Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, I., Legg, S., and Kavukcuoglu, K. (2018). IM-
PALA: Scalable Distributed Deep-RL with Impor-
tance Weighted Actor-Learner Architectures. 35th In-
ternational Conference on Machine Learning, ICML
2018, 4:2263–2284.
Felsen, P., Lucey, P., and Ganguly, S. (2018). Where Will
They Go? Predicting Fine-Grained Adversarial Multi-
agent Motion Using Conditional Variational Autoen-
coders. Technical report.
Fernandez, J. and Bornn, L. (2018). Wide Open Spaces:
A statistical technique for measuring space creation in
professional soccer. In MIT Sloan Sports Analytics
Conference. MIT Press.
Garnier, P. and Gregoir, T. (2021). Evaluating Soccer
Player: from Live Camera to Deep Reinforcement
Learning.
Gonc¸alves, B., Coutinho, D., Santos, S., Lago-Penas,
C., Jim
´
enez, S., and Sampaio, J. (2017). Explor-
ing team passing networks and player movement dy-
namics in youth association football. PLoS ONE,
12(1):e0171156.
Gyarmati, L. and Anguera, X. (2015). Automatic Extraction
of the Passing Strategies of Soccer Teams.
Herbrich, R., Minka, T., and Graepel, T. (2007). TrueSkill:
A Bayesian Skill Rating System. Technical report.
Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. (2018). Distributed
Prioritized Experience Replay.
Itsuki, N. (1995). Soccer server: a simulator for
RoboCup. In JSAI AI-Symposium 95: Special Session
on RoboCup. Citeseer.
Kingma, D. P. and Ba, J. (2014). Adam: A Method for
Stochastic Optimization. 3rd International Confer-
ence on Learning Representations, ICLR 2015 - Con-
ference Track Proceedings.
Kurach, K., Raichuk Piotr St
´
a nczyk Michał Zaj, A., and
Bachem Lasse Espeholt Carlos Riquelme Damien
Vincent Marcin Michalski Olivier Bousquet Syl-
vain Gelly, O. (2019). Google Research Football: A
Novel Reinforcement Learning Environment.
Le, H. M., Yue, Y., Carr, P., and Lucey, P. (2017). Coor-
dinated multi-agent imitation learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 1995–2003. JMLR. org.
Lewis, M. (2004). Moneyball: The Art of Winning an Un-
fair Game. W. W. Norton.
Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess,
N., and Graepel, T. (2019). Emergent Coordination
Through Competition.
Liu, S., Lever, G., Wang, Z., Merel, J., Eslami, S. M. A.,
Hennes, D., Czarnecki, W. M., Tassa, Y., Omid-
shafiei, S., Abdolmaleki, A., Siegel, N. Y., Hasen-
clever, L., Marris, L., Tunyasuvunakool, S., Song,
H. F., Wulfmeier, M., Muller, P., Haarnoja, T., Tracey,
B. D., Tuyls, K., Graepel, T., and Heess, N. (2021).
From Motor Control to Team Play in Simulated Hu-
manoid Football.
Macalpine, P. and Stone, P. (2018). Journal Logo Over-
lapping Layered Learning. In Artificial Intelligence
(AIJ), 254:21–43.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing Atari with Deep Reinforcement
Learning.
Novatchkov, H. and Baca, A. (2013). Artificial intelligence
in sports on the example of weight training. Journal
of Sports Science and Medicine, 12(1):27–37.
Oliver, D. (2020). Basketball on Paper: Rules and Tools for
Performance Analysis. Potomac Books, Incorporated.
Pe
˜
na, J. L. and Hugo, T. (2012). A network theory analy-
sis of football strategies. Euromech Physics of Sports
Conference.
Pinciroli Vago, N. O., Lavinas, Y., Rodrigues, D., Moura,
F., Cunha, S., Aranha, C., and da Silva Torres, R.
(2020). INTEGRA: An Open Tool To Support Graph-
Based Change Pattern Analyses In Simulated Football
Matches. In ECMS 2020 Proceedings edited by Mike
Steglich, Christian Mueller, Gaby Neumann, Mathias
Walther, pages 228–234. ECMS.
Riedmiller, M., Gabel, T., Hafner, R., and Lange, S. (2009).
Reinforcement learning for robot soccer. 27:55–73.
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Has-
sabis, D., Graepel, T., Lillicrap, T., and Silver, D.
(2020). Mastering Atari, Go, chess and shogi by plan-
ning with a learned model. Nature, 588(7839):604–
609.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal Policy Optimization Al-
gorithms.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., and Hassabis, D. (2016). Mastering the game of
Go with deep neural networks and tree search. Na-
ture, 529.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
How Does AI Play Football? An Analysis of RL and Real-world Football Strategies
51