Ghazvininejad, M., Shi, X., Priyadarshi, J., and Knight, K.
(2017). Hafez: an interactive poetry generation sys-
tem. In Proceedings of ACL 2017, System Demon-
strations, pages 43–48.
Guo, G., Ouyang, S., Yuan, F., and Wang, X. (2018). Ap-
proximating word ranking and negative sampling for
word embedding. In International Joint Conferences
on Artificial Intelligence Organization.
Hakami, A., Alqarni, R., Almutairi, M., and Alhothali, A.
(2021). Arabic poems generation using lstm, markov-
lstm and pre-trained gpt-2 models. In Computer Sci-
ence & Information Technology (CS & IT), volume 11,
pages 139–147.
He, J., Zhou, M., and Jiang, L. (2012). Generating chi-
nese classical poems with statistical machine transla-
tion models. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, pages 1650–
1656.
Heilbron, M., Ehinger, B., Hagoort, P., and De Lange, F. P.
(2019). Tracking naturalistic linguistic predictions
with deep neural language models. arXiv preprint
arXiv:1909.04400.
Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
(2019). The curious case of neural text degeneration.
arXiv preprint arXiv:1904.09751.
Krippendorff, K. (2013). Content Analysis: An Introduction
to Its Methodology (third edition). Sage Publications.
Lau, J. H., Cohn, T., Baldwin, T., Brooke, J., and Ham-
mond, A. (2018). Deep-speare: A joint neural model
of poetic language, meter and rhyme. arXiv preprint
arXiv:1807.03491.
Li, J., Song, Y., Zhang, H., Chen, D., Shi, S., Zhao, D., and
Yan, R. (2018). Generating classical chinese poems
via conditional variational autoencoder and adversar-
ial training. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3890–3900.
Mikolov, T., Karafi
´
at, M., and Burget, L. (2010).
Jan
ˇ
cernocky, and sanjeev khudanpur. 2010. recurrent
neural network based language model. In Eleventh an-
nual conference of the international speech communi-
cation association, pages 1045–1048.
Oliveira, H. G. and Cardoso, A. (2015). Poetry genera-
tion with poetryme. In Computational Creativity Re-
search: Towards Creative Machines, pages 243–266.
Springer.
Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meet-
ing of the Association for Computational Linguistics,
pages 311–318.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9.
Sennrich, R., Haddow, B., and Birch, A. (2015). Neural
machine translation of rare words with subword units.
arXiv preprint arXiv:1508.07909.
Singh, D., Ackerman, M., and P
´
erez, R. Y. (2017). A ballad
of the mexicas: Automated lyrical narrative writing.
In ICCC.
Subramanian, S., Rajeswar, S., Dutil, F., Pal, C., and
Courville, A. (2017). Adversarial generation of nat-
ural language. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 241–251.
Talafha, S. and Rekabdar, B. (2019a). Arabic poem genera-
tion incorporating deep learning and phonetic cnnsub-
word embedding models. International Journal of
Robotic Computing, pages 64–91.
Talafha, S. and Rekabdar, B. (2019b). Arabic poem gener-
ation with hierarchical recurrent attentional network.
In 2019 IEEE 13th International Conference on Se-
mantic Computing (ICSC), pages 316–323. IEEE.
Van de Cruys, T. (2020). Automatic poetry generation from
prosaic text. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2471–2480.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. arXiv preprint
arXiv:1706.03762.
Wang, Q., Luo, T., and Wang, D. (2016a). Can machine
generate traditional chinese poetry? a feigenbaum
test. In International Conference on Brain Inspired
Cognitive Systems, pages 34–46. Springer.
Wang, Q., Luo, T., Wang, D., and Xing, C. (2016b). Chi-
nese song iambics generation with neural attention-
based model. arXiv preprint arXiv:1604.06274.
Wang, Z., He, W., Wu, H., Wu, H., Li, W., Wang, H.,
and Chen, E. (2016c). Chinese poetry generation
with planning based neural network. arXiv preprint
arXiv:1610.09889.
Wei, J., Zhou, Q., and Cai, Y. (2018). Poet-based po-
etry generation: Controlling personal style with recur-
rent neural networks. In 2018 International Confer-
ence on Computing, Networking and Communications
(ICNC), pages 156–160. IEEE.
Xu, L., Jiang, L., Qin, C., Wang, Z., and Du, D. (2018).
How images inspire poems: Generating classical chi-
nese poetry from images with memory networks. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32.
Yan, R. (2016). i, poet: Automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In IJCAI, pages 2238–2244.
Yan, R., Jiang, H., Lapata, M., Lin, S.-D., Lv, X., and Li,
X. (2013). i, poet: automatic chinese poetry compo-
sition through a generative summarization framework
under constrained optimization. In Twenty-Third In-
ternational Joint Conference on Artificial Intelligence.
Yang, X., Lin, X., Suo, S., and Li, M. (2017). Generating
thematic chinese poetry using conditional variational
autoencoders with hybrid decoders. arXiv preprint
arXiv:1711.07632.
Yi, X., Li, R., and Sun, M. (2017). Generating chi-
nese classical poems with rnn encoder-decoder. In
Chinese Computational Linguistics and Natural Lan-
guage Processing Based on Naturally Annotated Big
Data, pages 211–223. Springer.
Yi, X., Li, R., and Sun, M. (2018). Chinese poetry gener-
Automatic Arabic Poem Generation with GPT-2
373