Table 7: Network Tolerance.
Thousandths (4 digits) Hundredths (3 digits) Tenths (2 digits)
Noise Accuracy Noise Accuracy Noise Accuracy
0,001 99,61 0,01 100,00 0,1 66,67
0,002 99,61 0,02 100,00 0,2 17,65
0,003 99,61 0,03 99,22 0,3 3,92
0,004 99,61 0,04 98,43 0,4 0,78
0,005 100,00 0,05 98,04 0,5 0,00
0,006 100,00 0,06 92,55 0,6 0,00
0,007 100,00 0,07 86,67 0,7 0,00
0,008 99,61 0,08 78,43 0,8 0,00
0,009 99,61 0,09 74,12 0,9 0,00
Table 8: Neural Network Security Results.
Initialization Password
Length
Equation Time (s) Time (years)
4 T = (223
4
) × 27.47(s) 67932580424 2,15E+03
5 T = (223
5
) × 27.47(s) 15148965434612 4,80E+05
10 T = (223
10
) × 27.47(s) 8,35425E+24 2,65E+17
12 T = (223
12
) × 27.47(s) 4,15448E+29 1,32E+22
14 T = (223
14
) × 27.47(s) 2,06598E+34 6,55E+26
15 T = (223
15
) × 27.47(s) 4,60714E+36 1,46E+29
REFERENCES
Charniya, N. N. (2013). Design of near-optimal classifier
using multi-layer perceptron neural networks for in-
telligent sensors. International Journal of Modeling
and Optimization.
Coutinho, M., de Oliveira Albuquerque, R., Borges, F., Gar-
cia Villalba, L. J., and Kim, T.-H. (2018). Learning
perfectly secure cryptography to protect communica-
tions with adversarial neural cryptography. Sensors,
18(5):1306.
Farah, S., Javed, M. Y., Shamim, A., and Nawaz, T. (2012).
An experimental study on performance evaluation of
asymmetric encryption algorithms.
Jogdand, R. M. (2011). Design of an efficient neural key
generation. International Journal of Artificial Intelli-
gence & Applications (IJAIA).
Kanter, I. and Kinzel, W. (2003). The theory of neural net-
works and cryptography. In The Physics of Communi-
cation, pages 631–642. World Scientific.
Kinzel, W. and Kanter, I. (2002). Interacting neural net-
works and cryptography. In Advances in solid state
physics, pages 383–391. Springer.
Klein, E., Mislovaty, R., Kanter, I., Ruttor, A., and Kinzel,
W. (2005). Synchronization of neural networks by
mutual learning and its application to cryptography.
Advances in Neural Information Processing Systems.
Maqsood, F., Ahmed, M., Ali, M. M., and Shah, M. A.
(2017). Cryptography: A comparative analysis for
modern techniques. International Journal of Ad-
vanced Computer Science and Applications, 8(6).
Matta, R. and Kumar, A. (2016). Performance comparison
for rsa and ecc in video steganography. International
Journal of Engineering Science and Computing.
Quinga, F. and Chang, O. (2020). A Deep Learning Ap-
proach for a Symmetric Key Cryptography System.
Quinga-Socasi, F., Velastegui, R., Zhinin-Vera, L.,
Valencia-Ramos, R., Ortega-Zamorano, F., and
Chang, O. (2020). Digital cryptography implemen-
tation using neurocomputational model with autoen-
coder architecture.
Valencia, R. and Chang, O. (2020). Cryptography system
implementation using neurocomputational model and
deep learning.
Volna, E., Kotyrba, M., Kocian, V., and Janosek, M. (2012).
Cryptography based on neural network. In ECMS,
pages 386–391.
Zhinin-Vera, L., Chang, O., Valencia-Ramos, R., Ve-
lastegui, R., Pilliza, G. E., and Quinga-Socasi, F.
(2020). Q-credit card fraud detector for imbalanced
classification using reinforcement learning. pages
279–286.
An Asymetric-key Cryptosystem based on Artificial Neural Network
547