(a) Real image (b) Convolu-
tion LB on red
channel
(c) Convolu-
tion UB on red
channel
(d) Real image (e) Convolu-
tion LB on
green channel
(f) Convolu-
tion UB on
green channel
(g) Real image (h) Convolu-
tion LB on
blue channel
(i) Convolu-
tion UB on
blue channel
Figure 9: Lower and Upper bounds in Convolutional attacks
(for dim1=0 and dim2=1).
We will also consider the optimisation of neural net-
work architecture for training neural networks to be
provably robust against convolutional attacks.
REFERENCES
Alaifari, R., Alberti, G. S., and Gauksson, T. (2018). Adef:
an iterative algorithm to construct adversarial defor-
mations. arXiv preprint arXiv:1804.07729.
Balunovic, M., Baader, M., Singh, G., Gehr, T., and Vechev,
M. (2019). Certifying geometric robustness of neural
networks. In Advances in Neural Information Pro-
cessing Systems, pages 15313–15323.
Biggio, B., Corona, I., Maiorca, D., Nelson, B.,
ˇ
Srndi
´
c, N.,
Laskov, P., Giacinto, G., and Roli, F. (2013). Eva-
sion attacks against machine learning at test time. In
Joint European conference on machine learning and
knowledge discovery in databases, pages 387–402.
Springer.
Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P., and
Mudigonda, P. K. (2018). A unified view of piece-
wise linear neural network verification. In Advances in
Neural Information Processing Systems, pages 4790–
4799.
Cousot, P. and Cousot, R. (1992). Abstract interpretation
and application to logic programs. The Journal of
Logic Programming, 13(2-3):103–179.
Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and
Madry, A. (2019). Exploring the landscape of spatial
robustness. In International Conference on Machine
Learning, pages 1802–1811. PMLR.
Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P.
(2017). The robustness of deep networks: A geomet-
rical perspective. IEEE Signal Processing Magazine,
34(6):50–62.
Gedraite, E. S. and Hadad, M. (2011). Investigation on the
effect of a gaussian blur in image filtering and seg-
mentation. In Proceedings ELMAR-2011, pages 393–
396. IEEE.
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. (2018). Ai2: Safety
and robustness certification of neural networks with
abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE.
Ghorbal, K., Goubault, E., and Putot, S. (2009). The zono-
tope abstract domain taylor1+. In International Con-
ference on Computer Aided Verification, pages 627–
633. Springer.
Goodfellow, I., Lee, H., Le, Q., Saxe, A., and Ng, A. (2009).
Measuring invariances in deep networks. Advances in
neural information processing systems, 22:646–654.
Henry, J. (2014). Static Analysis by Abstract Interpretation
and Decision Procedures. PhD thesis, Universit
´
e de
Grenoble.
Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015).
Spatial transformer networks. Advances in neural in-
formation processing systems, 28:2017–2025.
Kanbak, C., Moosavi-Dezfooli, S.-M., and Frossard, P.
(2018). Geometric robustness of deep networks: anal-
ysis and improvement. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 4441–4449.
Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. (2017). Reluplex: An efficient smt solver for
verifying deep neural networks. In International Con-
ference on Computer Aided Verification, pages 97–
117. Springer.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.
LeCun, Y. (1998). The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Li, J., Liu, J., Yang, P., Chen, L., Huang, X., and Zhang,
L. (2019). Analyzing deep neural networks with sym-
bolic propagation: towards higher precision and faster
verification. In International Static Analysis Sympo-
sium, pages 296–319. Springer.
Li, R., Li, J., Huang, C.-C., Yang, P., Huang, X., Zhang,
L., Xue, B., and Hermanns, H. (2020). Prodeep: a
platform for robustness verification of deep neural net-
works. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, pages 1630–1634.
Pulina, L. and Tacchella, A. (2010). An abstraction-
refinement approach to verification of artificial neural
Towards a Certification of Deep Image Classifiers against Convolutional Attacks
427