REFERENCES
Ahmed, H., Traore, I., and Saad, S. (2017). Detection
of online fake news using n-gram analysis and ma-
chine learning techniques. In International confer-
ence on intelligent, secure, and dependable systems in
distributed and cloud environments, pages 127–138.
Springer.
Ahmed, H., Traore, I., and Saad, S. (2018). Detecting opin-
ion spams and fake news using text classification. Se-
curity and Privacy, 1(1):e9.
Breiman, L. (1996). Bagging predictors. Machine learning,
24(2):123–140.
Cortiz, D. (2021). Exploring transformers in emotion recog-
nition: a comparison of bert, distillbert, roberta, xlnet
and electra. arXiv preprint arXiv:2104.02041.
Demszky, D., Movshovitz-Attias, D., Ko, J., Cowen, A.,
Nemade, G., and Ravi, S. (2020). Goemotions:
A dataset of fine-grained emotions. arXiv preprint
arXiv:2005.00547.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Efron, B. (1992). Bootstrap methods: another look at the
jackknife. In Breakthroughs in statistics, pages 569–
593. Springer.
Ekman, P. (1992). Are there basic emotions?
Ghanem, B., Rosso, P., and Rangel, F. (2020). An emotional
analysis of false information in social media and news
articles. ACM Transactions on Internet Technology
(TOIT), 20(2):1–18.
Ghazi, D., Inkpen, D., and Szpakowicz, S. (2015). Detect-
ing emotion stimuli in emotion-bearing sentences. In
International Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 152–165.
Springer.
Govi, P. (2020). Classify emotions in text with bert.
Li, Y., Su, H., Shen, X., Li, W., Cao, Z., and Niu, S. (2017).
Dailydialog: A manually labelled multi-turn dialogue
dataset. arXiv preprint arXiv:1710.03957.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Liu, Y. and Wu, Y.-F. B. (2018). Early detection of fake
news on social media through propagation path clas-
sification with recurrent and convolutional networks.
In Thirty-second AAAI conference on artificial intelli-
gence.
Ma, J., Gao, W., and Wong, K.-F. (2017). Detect rumors in
microblog posts using propagation structure via kernel
learning. Association for Computational Linguistics.
McHugh, M. L. (2013). The chi-square test of indepen-
dence. Biochemia medica, 23(2):143–149.
Meyers, M., Weiss, G., and Spanakis, G. (2020). Fake news
detection on twitter using propagation structures. In
Multidisciplinary International Symposium on Dis-
information in Open Online Media, pages 138–158.
Springer.
Paschen, J. (2019). Investigating the emotional appeal of
fake news using artificial intelligence and human con-
tributions. Journal of Product & Brand Management.
P
´
erez-Rosas, V., Kleinberg, B., Lefevre, A., and Mihalcea,
R. (2017). Automatic detection of fake news. arXiv
preprint arXiv:1708.07104.
Risdal, M. (2016). Getting real about fake news.
Ronaghan, S. (2018). The mathematics of decision trees,
random forest and feature importance in scikit-learn
and spark. Toward Data Science url.
Ruchansky, N., Seo, S., and Liu, Y. (2017). Csi: A hybrid
deep model for fake news detection. In Proceedings
of the 2017 ACM on Conference on Information and
Knowledge Management, pages 797–806.
Saravia, E., Liu, H.-C. T., Huang, Y.-H., Wu, J., and Chen,
Y.-S. (2018). CARER: Contextualized affect repre-
sentations for emotion recognition. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3687–3697, Brussels,
Belgium. Association for Computational Linguistics.
Scherer, K. and Wallbott, H. (1990). International survey
on emotion antecedents and reactions (isear).
Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. (2017).
Fake news detection on social media: A data mining
perspective. ACM SIGKDD explorations newsletter,
19(1):22–36.
Valkov, V. (2020). Sentiment analysis with bert and trans-
formers by hugging face using pytorch and python.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. arXiv preprint
arXiv:1706.03762.
Zhang, X. and Ghorbani, A. A. (2020). An overview of
online fake news: Characterization, detection, and
discussion. Information Processing & Management,
57(2):102025.
APPENDIX
Figure 4: Distribution of emotions in the Emotion Dataset.
The dataset is a combination of the Huggingface Emotion
Dataset, ISEAR, DailyDialogue and the Emotion Stimulus
datasets.
FOREAL: RoBERTa Model for Fake News Detection based on Emotions
439