Chen, P., Liu, S., Zhao, H., & Jia, J. (2020). Gridmask data
augmentation. arXiv preprint arXiv:2001.04086.
Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q.
V. (2019). Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (pp. 113-123).
Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2020).
Randaugment: Practical automated data augmentation
with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (pp. 702-703).
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L.
(2009). Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition (pp. 248-255). IEEE.
DeVries, T., & Taylor, G. W. (2017). Improved
regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552.
Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do
we perceive in a glance at a real-world scene? Journal of
vision, 7(1), 10-10.
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., &
Greenspan, H. (2018, April). Synthetic data
augmentation using GAN for improved liver lesion
classification. In 2018 IEEE 15th international
symposium on biomedical imaging (ISBI 2018) (pp. 289-
293). IEEE.
Han, H., Jain, A. K., Wang, F., Shan, S., & Chen, X. (2017).
Heterogeneous face attribute estimation: A deep
multitask learning approach. IEEE transactions on
pattern analysis and machine intelligence, 40(11), 2597-
2609.
Hand, E. M., & Chellappa, R. (2017). Attributes for
improved attributes: A multitask network utilizing
implicit and explicit relationships for facial attribute
classification. In Thirty-First AAAI Conference on
Artificial Intelligence.
Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B.,
Tan, M., ... & Adam, H. (2019). Searching for
mobilenetv3. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 1314-
1324).
Hrga, I., & Ivašić-Kos, M. (2019, May). Deep image
captioning: An overview. In 2019 42nd International
Convention on Information and Communication
Technology, Electronics and Microelectronics
(MIPRO) (pp. 995-1000). IEEE.
Inoue, H. (2018). Data augmentation by pairing samples for
images classification. arXiv preprint arXiv:1801.02929.
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-
to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1125-
1134).
Jang, Y., Gunes, H., & Patras, I. (2019). Registration-free
face-ssd: Single shot analysis of smiles, facial attributes,
and affect in the wild. Computer Vision and Image
Understanding, 182, 17-29.
Jung, A. B., Wada, K., Crall, J., Tanaka, S., Graving, J.,
Yadav, S., ... & Laporte, M. (2020). Imaging. GitHub:
San Francisco, CA, USA.
Karras, T., Laine, S., & Aila, T. (2019). A style-based
generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp.4401-
4410).
Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25, 1097-1105.
Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Smart
augmentation learning is an optimal data augmentation
strategy. Ieee Access, 5, 5858-5869.
Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning
face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision (pp. 3730-
3738).
Perez, L., & Wang, J. (2017). The effectiveness of data
augmentation in image classification using deep
learning. arXiv preprint arXiv:1712.04621.
Regulation (EU) 2016/679 of the European Parliament and
of the Council [online] https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679&fr
om=HR#d1e40-1-1 [Accessed: 20
th
October 2021.]
Rudd, E. M., Günther, M., & Boult, T. E. (2016). Moon: A
mixed objective optimization network for the recognition
of facial attributes. In European Conference on
Computer Vision (pp. 19-35). Springer, Cham.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet:
A unified embedding for face recognition and clustering.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 815-823).
Sharma, A. K., & Foroosh, H. (2020). Slim-CNN: A
lightweight CNN for face attribute prediction. In 2020
15th IEEE International Conference on Automatic Face
and Gesture Recognition (FG 2020) (pp. 329-335).
IEEE.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal of
Big Data, 6(1), 1-48.
Singh, K. K., Yu, H., Sarmasi, A., Pradeep, G., & Lee, Y. J.
(2018). Hide-and-seek: A data augmentation technique
for weakly-supervised localization and beyond. arXiv
preprint arXiv:1811.02545.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 1929-1958.
Takahashi, R., Matsubara, T., & Uehara, K. (2019). Data
augmentation using random image cropping and
patching for deep CNNs. IEEE Transactions on Circuits
and Systems for Video Technology, 30(9), 2917-2931.
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D.
(2017). mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412.
Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020).
Random erasing data augmentation. In Proceedings of
the AAAI Conference on Artificial Intelligence (Vol. 34,
No. 07, pp. 13001-13008).