Jin, T., Cui, H., Zeng, S., & Wang, X. (2017). Learning
Deep Spatial Lung Features by 3D Convolutional
Neural Network for Early Cancer Detection. DICTA
2017 - 2017 International Conference on Digital Image
Computing: Techniques and Applications, 2017-
December, 1–6. https://doi.org/10.1109/DICTA.2017.
8227454.
Gerard, S. E., & Reinhardt, J. M. (2019). Pulmonary lobe
segmentation using a sequence of convolutional neural
networks for marginal learning. Proceedings -
International Symposium on Biomedical Imaging,
2019-April(Isbi), 1207–1211. https://doi.org/10.1109/
ISBI.2019.8759212.
Jiang, H., Shi, T., Bai, Z., & Huang, L. (2019). AHCNet:
An Application of Attention Mechanism and Hybrid
Connection for Liver Tumor Segmentation in CT
Volumes. IEEE Access, 7, 24898–24909.
https://doi.org/10.1109/ACCESS.2019.2899608
Wang, C., Song, H., Chen, L., Li, Q., Yang, J., Hu, X. T.,
& Zhang, L. (2019). Automatic Liver Segmentation
Using Multi-plane Integrated Fully Convolutional
Neural Networks. Proceedings - 2018 IEEE
International Conference on Bioinformatics and
Biomedicine, BIBM 2018, 518–523.
https://doi.org/10.1109/BIBM.2018.8621257
Shrestha, U., & Salari, E. (2018). Automatic Tumor
Segmentation Using Machine Learning Classifiers.
IEEE International Conference on Electro Information
Technology, 2018-May, 153–158. https://doi.org/10.
1109/EIT.2018.8500205
Ahmad, M., Ai, D., Xie, G., Qadri, S. F., Song, H., Huang,
Y., … Yang, J. (2019). Deep Belief Network Modeling
for Automatic Liver Segmentation. IEEE Access, 7,
20585–20595.
https://doi.org/10.1109/ACCESS.2019.2896961
Wang, Z. H., Liu, Z., Song, Y. Q., & Zhu, Y. (2019).
Densely connected deep U-Net for abdominal multi-
organ segmentation. Proceedings - International
Conference on Image Processing, ICIP, 2019-
September, 1415–1419. https://doi.org/10.1109/ICIP.
2019.8803103
Chen, X., Zhang, R., & Yan, P. (2019). Feature fusion
encoder decoder network for automatic liver lesion
segmentation. Proceedings - International Symposium
on Biomedical Imaging, 2019-April(Isbi), 430–433.
https://doi.org/10.1109/ISBI.2019.8759555
Li, X., Chen, H., Qi, X., Dou, Q., Fu, C. W., & Heng, P. A.
(2018). H-DenseU-Net: Hybrid Densely Connected U-
Net for Liver and Tumor Segmentation from CT
Volumes. IEEE Transactions on Medical Imaging,
37(12), 2663–2674. https://doi.org/10.1109/TMI.2018.
2845918.
Rafiei, S., Nasr-Esfahani, E., Soroushmehr, S. M. R.,
Karimi, N., Samavi, S., & Najarian, K. (2018). Liver
segmentation in ct images using three dimensional to
two dimensional fully convolutional network. ArXiv,
2067–2071.
Xia, K., Yin, H., Qian, P., Jiang, Y., & Wang, S. (2019).
Liver semantic segmentation algorithm based on
improved deep adversarial networks in combination of
weighted loss function on abdominal CT images. IEEE
Access, 7, 96349–96358. https://doi.org/10.1109/
ACCESS.2019.2929270
Truong, T. N., Dam, V. D., & Le, T. S. (2018). Medical
Images Sequence Normalization and Augmentation:
Improve Liver Tumor Segmentation from Small Data
Set. Proceedings - 2018 3rd International Conference
on Control, Robotics and Cybernetics, CRC 2018, 1–5.
https://doi.org/10.1109/CRC.2018.00010
Zhou, Y., Wang, Y., Tang, P., Bai, S., Shen, W., Fishman,
E. K., & Yuille, A. (2019). Semi-supervised 3D
abdominal multi-organ segmentation via deep multi-
planar co-training. Proceedings - 2019 IEEE Winter
Conference on Applications of Computer Vision,
WACV 2019, 121–140. https://doi.org/10.1109/
WACV.2019.00020.
Shell, Adam (2020), How to invest in artificial intelligence,
https://www.usatoday.com/story/money/2020/01/27/ar
tificial-intelligence-how-invest/4542467002/.
Chen, S., Yang, H., Fu, J., Mei, W., Ren, S., Liu, Y., …
Chen, H. (2019). U-Net Plus: Deep Semantic
Segmentation for Esophagus and Esophageal Cancer in
Computed Tomography Images. IEEE Access, 7,
82867–82877.
https://doi.org/10.1109/ACCESS.2019.2923760
Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., &
Shen, D. (2017). Segmentation of Organs at Risk in
thoracic CT images using a SharpMask architecture and
Conditional Random Fields. Proceedings -
International Symposium on Biomedical Imaging,
1003–1006.
https://doi.org/10.1109/ISBI.2017.7950685
Trullo, R., Petitjean, C., Nie, D., Shen, D., & Ruan, S.
(2017). Fully automated esophagus segmentation with
a hierarchical deep learning approach. Proceedings of
the 2017 IEEE International Conference on Signal and
Image Processing Applications, ICSIPA 2017, 503–
506. https://doi.org/10.1109/ICSIPA.2017.8120664
Fang, L., Liu, J., Liu, J., & Mao, R. (2018). Automatic
Segmentation and 3D Reconstruction of Spine Based
on FCN and Marching Cubes in CT Volumes. (2018)
10th International Conference on Modelling,
Identification and Control (ICMIC), (Icmic), 1–5.
Tang, Z., Chen, K., Pan, M., Wang, M., & Song, Z. (2019).
An Augmentation Strategy for Medical Image
Processing Based on Statistical Shape Model and 3D
Thin Plate Spline for Deep Learning. IEEE Access, 7,
133111–133121. https://doi.org/10.1109/ACCESS.
2019.2941154
Kuok, Chan-Pang and Hsue, Jin-Yuan and Shen, Ting-Li
and Huang, Bing-Feng and Chen, Chi-Yeh and Sun, Y.-
N. (2018). Segmentation from 3D CT Images. Pacific
Neighborhood Consortium Annual Conference and
Joint Meetings (PNC), (c), 1–6.
Zhou, Y., Wang, Y., Tang, P., Bai, S., Shen, W., Fishman,
E. K., & Yuille, A. (2019). Semi-supervised 3D
abdominal multi-organ segmentation via deep multi-
planar co-training. Proceedings - 2019 IEEE Winter
Conference on Applications of Computer Vision,