Bosscha, E. (2016). Big data in railway operations: Using
artificial neural networks to predict train delay
propagation (Master's thesis, University of Twente).
Breiman, L. (2001). Random forests. Machine learning,
45(1), 5-32.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. Proceedings of the 22nd ACM sigkdd
international conference on knowledge discovery and
data mining (pp. 785-794).
Gao, B., Ou, D., Dong, D., & Wu, Y. (2020). A Data-Driven
Two-Stage Prediction Model for Train Primary-Delay
Recovery Time. International Journal of Software
Engineering and Knowledge Engineering, 30(07), 921-
940.
Hopfield, J. J. (1988). Artificial neural networks. IEEE
Circuits and Devices Magazine, 4(5), 3-10.
Huang, P., Wen, C., Fu, L., Peng, Q., & Tang, Y. (2020). A
deep learning approach for multi-attribute data: A study
of train delay prediction in railway systems.
Information Sciences, 516, 234-253.
Jiang, C., Huang, P., Lessan, J., Fu, L., & Wen, C. (2019).
Forecasting primary delay recovery of high-speed
railway using multiple linear regression, supporting
vector machine, artificial neural network, and random
forest regression. Canadian Journal of Civil
Engineering, 46(5), 353-363.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
... & Liu, T. Y. (2017). Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural
information processing systems, 30, 3146-3154.
Kecman, P., & Goverde, R. M. (2015). Predictive
modelling of running and dwell times in railway traffic.
Public Transport, 7(3), 295-319.
Laifa, H., & Ghezalaa, H. H. B. (2021). Train delay
prediction in Tunisian railway through LightGBM
model. Procedia Computer Science, 192, 981-990.
Li, D., Daamen, W., & Goverde, R. M. (2016). Estimation
of train dwell time at shortstops based on track
occupation event data: A study at a Dutch railway
station. Journal of Advanced Transportation, 50(5),
877-896.
Li, Z., Wen, C., Hu, R., Xu, C., Huang, P., & Jiang, X.
(2020). Near-term train delay prediction in the Dutch
railways network. International Journal of Rail
Transportation, 1-20.
Liu, Y., Tang, T., & Xun, J. (2017). Prediction algorithms
for train arrival time in urban rail transit. In 2017 IEEE
20th International Conference on Intelligent
Transportation Systems (ITSC) (pp. 1-6). IEEE.
Lulli, A., Oneto, L., Canepa, R., Petralli, S., & Anguita, D.
(2018). Large-scale railway networks train movements:
a dynamic, interpretable, and robust hybrid data
analytics system. In 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics
(DSAA) (pp. 371-380). IEEE.
Marković, N., Milinković, S., Tikhonov, K. S., &
Schonfeld, P. (2015). Analyzing passenger train arrival
delays with support vector regression. Transportation
Research Part C: Emerging Technologies, 56, 251-262.
Mou, W., Cheng, Z., & Wen, C. (2019). Predictive Model
of Train Delays in a Railway System. In
RailNorrköping 2019. 8th International Conference on
Railway Operations Modelling and Analysis
(ICROMA), Norrköping, Sweden, June 17th–20th,
2019 (No. 069, pp. 913-929). Linköping University
Electronic Press.
Nabian, M. A., Alemazkoor, N., & Meidani, H. (2019).
Predicting near-term train schedule performance and
delay using bi-level random forests. Transportation
Research Record, 2673(5), 564-573.
Nair, R., Hoang, T. L., Laumanns, M., Chen, B., Cogill, R.,
Szabó, J., & Walter, T. (2019). An ensemble prediction
model for train delays. Transportation Research Part C:
Emerging Technologies, 104, 196-209.
Nilsson, R., & Henning, K. (2018). Predictions of train
delays using machine learning.
Oneto, L., Fumeo, E., Clerico, G., Canepa, R., Papa, F.,
Dambra, C., ... & Anguita, D. (2016). Advanced
analytics for train delay prediction systems by including
exogenous weather data. In 2016 IEEE International
Conference on Data Science and Advanced Analytics
(DSAA) (pp. 458-467). IEEE.
Shi, R., Wang, J., Xu, X., Wang, M., & Li, J. (2019). Arrival
Train Delays Prediction Based on Gradient Boosting
Regression Trees. In International Conference on
Electrical and Information Technologies for Rail
Transportation (pp. 307-315). Springer, Singapore.
Shmueli, G., Koppius, O. R. (2011). Predictive analytics in
information systems research. MIS Quarterly, 553-572.
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support
vector regression. Statistics and Computing, 14(3), 199-
222.
Yaghini, M., Khoshraftar, M. M., & Seyedabadi, M. (2013).
Railway passenger train delay prediction via neural
network model. Journal of advanced transportation,
47(3), 355-368.